Advertisement

Detection of Circular Shapes in Digital Images

  • Diego OlivaEmail author
  • Erik Cuevas
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 117)

Abstract

Evolutionary computation offers many interesting algorithms in which the behavior of a group of organisms or elements seems to have some fundamentally distinct collective intelligence. This collective intelligence allows that very simple elements can form capable systems to solve highly complex tasks by interacting to each other. On the other hand, automatic circle detection in digital images has been considered as an important and complex task for the computer vision community that has devoted a tremendous amount of research seeking for an optimal circle detector. This chapter presents an algorithm for the automatic detection of circular shapes embedded into cluttered and noisy images with no consideration of conventional Hough transform techniques. The algorithm uses the encoding of three non-collinear points embedded into an edge-only image as candidate circles. Guided by the values of the objective function, the set of encoded candidate circles (charged particles) are evolved using the EMO algorithm so that they can fit into the actual circular shapes on the edge map of the image. Experimental results from several tests on synthetic and natural images with a varying range of complexity are included to validate the efficiency of the presented technique regarding accuracy, speed, and robustness.

Keywords

Particle Swarm Optimization Circular Shape Edge Point Synthetic Image Edge Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Liu, J., Tsui, K.: Toward nature-inspired computing. Commun. ACM 49(10), 59–64 (2006)CrossRefGoogle Scholar
  2. 2.
    Hongwei, M.: Handbook of Research on Artificial Immune Systems and Natural Computing: Applying Complex Adaptive Technologies. IGI Global, United States of America (2009)Google Scholar
  3. 3.
    Lévy, P.: From social computing to reflexive collective intelligence: the IEML research program. Inf. Sci. 180(1), 71–94 (2010)CrossRefGoogle Scholar
  4. 4.
    Gruber, T.: Collective knowledge systems: where the social web meets the semantic web. Web Semant: Sci, Serv Agents World Wide Web 6(1), 4–13 (2008)CrossRefGoogle Scholar
  5. 5.
    Teodorović, D.: Swarm intelligence systems for transportation engineering: principles and applications. Transp. Res. Part C: Emerg. Technol. 16(6), 651–667 (2008)CrossRefGoogle Scholar
  6. 6.
    Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005)CrossRefGoogle Scholar
  8. 8.
    Naji-Azimi, Z., Toth, P., Galli, L.: An electromagnetism metaheuristic for the unicost set covering problem. Eur. J. Oper. Res. 205(2), 290–300 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    da Fontoura Costa, L., Marcondes Cesar, R., Jr.: Shape Análisis and Classification. CRC Press, Boca Raton FL. (2001)Google Scholar
  10. 10.
    Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Academic Press, London (1990)Google Scholar
  11. 11.
    Yuen, H., Princen, J., Illingworth, J., Kittler, J.: Comparative study of Hough transform methods for circle finding. Image Vision Comput. 8(1), 71–77 (1990)CrossRefGoogle Scholar
  12. 12.
    Iivarinen, J., Peura, M., Sarela, J., Visa, A.: Comparison of combined shape descriptors for irregular objects. In: Proceedings of 8th British Machine Vision Conference, pp. 430–439. Cochester, UK (1997)Google Scholar
  13. 13.
    Jones, G., Princen, J., Illingworth, J., Kittler, J. Robust estimation of shape parameters. In: Proc. British Machine Vision Conf., pp. 43– 48. (1990)Google Scholar
  14. 14.
    Fischer, M., Bolles, R.: Random sample consensus: a paradigm to model fitting with applications to image analysis and automated cartography. CACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bongiovanni, G., Crescenzi, P.: Parallel simulated annealing for shape detection. Comput. Vis. Image Underst. 61(1), 60–69 (1995)CrossRefGoogle Scholar
  16. 16.
    Roth, G., Levine, M.D.: Geometric primitive extraction using a genetic algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 901–905 (1994)CrossRefGoogle Scholar
  17. 17.
    Peura, M., Iivarinen, J.: Efficiency of simple shape descriptors. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds.) Advances in Visual Form Analysis, pp. 443–451. World Scientific, Singapore (1997)Google Scholar
  18. 18.
    Muammar, H., Nixon, M.: Approaches to extending the Hough transform. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing ICASSP_89, vol. 3, pp. 1556–1559 (1989)Google Scholar
  19. 19.
    Atherton, T.J., Kerbyson, D.J.: Using phase to represent radius in the coherent circle Hough transform. In: Proceedings of IEEE Colloquium on the Hough Transform, IEEE, London (1993)Google Scholar
  20. 20.
    Shaked, D., Yaron, O., Kiryati, N.: Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Comput. Vision Image Underst. 63, 512–526 (1996)CrossRefGoogle Scholar
  21. 21.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized Hough transform (RHT). Pattern Recogn. Lett. 11(5), 331–338 (1990)CrossRefzbMATHGoogle Scholar
  22. 22.
    Han, J.H., Koczy, L.T., Poston, T.: Fuzzy Hough transform. In: Proceedings of 2nd International Conference on Fuzzy Systems, vol. 2, pp. 803–808 (1993)Google Scholar
  23. 23.
    Becker, J., Grousson, S., Coltuc, D.: From Hough transforms to integral transforms. In: Proceedings of International Geoscience and Remote Sensing Symposium, 2002 IGARSS_02, vol. 3, pp. 1444–1446 (2002)Google Scholar
  24. 24.
    Lutton, E., Martinez, P.: A genetic algorithm for the detection 2-D geometric primitives on images. In: Proceedings of the 12th International Conference on Pattern Recognition, vol. 1, pp. 526–528 (1994)Google Scholar
  25. 25.
    Yao, J., Kharma, N., Grogono, P.: Fast robust GA-based ellipse detection. In: Proceedings of 17th International Conference on Pattern Recognition ICPR-04, vol. 2, pp. 859–862. Cambridge, UK (2004)Google Scholar
  26. 26.
    Yuen, S., Ma, C.: Genetic algorithm with competitive image labelling and least square. Pattern Recogn. 33, 1949–1966 (2000)CrossRefzbMATHGoogle Scholar
  27. 27.
    Ayala-Ramirez, V., Garcia-Capulin, C.H., Perez-Garcia, A., Sanchez-Yanez, R.E.: Circle detection on images using genetic algorithms. Pattern Recogn. Lett. 27, 652–657 (2006)CrossRefGoogle Scholar
  28. 28.
    Rosin, P.L., Nyongesa, H.O.: Combining evolutionary, connectionist, and fuzzy classification algorithms for shape analysis. In: Cagnoni, S. et al. (eds.) Proceedings of EvoIASP, Real-World Applications of Evolutionary Computing, pp. 87–96 (2000)Google Scholar
  29. 29.
    Rosin, P.L.: Further five point fit ellipse fitting. In: Proceedings of 8th British Machine Vision Conference, pp. 290–299. Cochester, UK (1997)Google Scholar
  30. 30.
    Zhang, X., Rosin, P.L.: Superellipse fitting to partial data. Pattern Recogn. 36, 743–752 (2003)CrossRefzbMATHGoogle Scholar
  31. 31.
    Andrei, N.: Acceleration of conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 213(2), 361–369 (2009)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Zhang, Q., Mahfouf, M.: A nature-inspired multi-objective optimization strategy based on a new reduced space search ing algorithm for the design of alloy steels. Eng. Appl. Artif. Intell. (2010). doi: 10.1016/j.engappai.2010.01.017
  33. 33.
    Birbil, Sİ., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gaafar, L.K., Masoud, S.A., Nassef, A.O.: A particle swarm-based genetic algorithm for scheduling in an agile environment. Comput. Ind. Eng. 55(3), 707–720 (2008)CrossRefGoogle Scholar
  35. 35.
    Chen, Y.-P., Jiang, P.: Analysis of particle interaction in particle swarm optimization. Theoret. Comput. Sci. 411(21), 2101–2115 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Maniezzo, V., Carbonaro, A.: Ant Colony Optimization: An Overview. Essays and Surveys in Metaheuristics, pp. 21–44. Kluwer Academic Publisher, Dordrecht (1999)Google Scholar
  37. 37.
    Wu, P., Yang, W.-H., Wei, N.-C.: An electromagnetism algorithm of neural network analysis—an application to textile retail operation. J. Chin. Inst. Ind. Eng. 21(1), 59–67 (2004)Google Scholar
  38. 38.
    Tsou, C.-S., Kao, C.-H.: Multi-objective inventory control using electromagnetism-like metaheuristic. Int. J. Prod. Res. 46(14), 3859–3874 (2008)CrossRefzbMATHGoogle Scholar
  39. 39.
    Rocha, A., Fernandes, E.: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems. Int. J. Comput. Math. 86(10), 1932–1946 (2009)CrossRefzbMATHGoogle Scholar
  40. 40.
    Rocha, A., Fernandes, E.: Modified movement force vector in an electromagnetism-like mechanism for global optimization. Optim. Meth. Softw. 24(2), 253–270 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Birbil, Sİ., Fang, S.-C., Sheu, R.L.: On the convergence of a population-based global optimization algorithm. J. Global Optim. 30(2), 301–318 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Naderi, B., Tavakkoli-Moghaddam, R., Khalili, M.: Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan. Knowl.-Based Syst. 23(2), 77–85 (2010)CrossRefGoogle Scholar
  43. 43.
    Yurtkuran, A., Emel, E.: A new hybrid electromagnetism-like algorithm for capacitated vehicle routing problems. Expert Syst. Appl. 37(4), 3427–3433 (2010)CrossRefGoogle Scholar
  44. 44.
    Jhang, J.-Y., Lee, K.-C.: Array pattern optimization using electromagnetism-like algorithm. AEU Int. J. Electron. Commun. 63(6), 491–496 (2009)CrossRefGoogle Scholar
  45. 45.
    Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20, 100–106 (1977)CrossRefzbMATHGoogle Scholar
  46. 46.
    Van Aken, J.R.: An efficient ellipse drawing algorithm. CG&A, 4(9), 24–35 (1984)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Electrónica, CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.Tecnológico de Monterrey, Campus GuadalajaraZapopanMexico

Personalised recommendations