Advertisement

Digital Image Segmentation as an Optimization Problem

  • Diego OlivaEmail author
  • Erik Cuevas
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 117)

Abstract

Segmentation is one of the most important tasks in image processing. It consist in classify the pixels in two or more groups depending on their intensity levels and a threshold value. The quality of the segmentation depends on the method applied to select the threshold. The use of the classical implementations for multilevel thresholding is computationally expensive since they exhaustively search the best values to optimize the objective function. Under such conditions, the use of optimization evolutionary approaches has been extended. In this chapter, a multilevel thresholding (MT) algorithm based on the EMO is introduced. The approach combines the good search capabilities of EMO algorithm with objective functions proposed by three popular MT methods: Otsu, Kapur and Tsallis. The algorithm takes random samples from a feasible search space inside the image histogram. Such samples build each particle in the EMO context whereas its quality is evaluated considering the objective function employed by the Otsu’s, Kapur’s or Tsallis method. Guided by these objective values the set of candidate solutions are evolved using the EMO operators until an optimal solution is found. The approach generates a multilevel segmentation algorithm which can effectively identify the threshold values of a digital image in a reduced number of iterations.

Keywords

Objective Function Particle Swarm Optimization Gray Scale Image Threshold Point Cuckoo Search Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.F.: An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39, 12407–12417 (2012)CrossRefGoogle Scholar
  2. 2.
    Lai, C., Tseng, D.: A hybrid approach using Gaussian smoothing and genetic algorithm for multilevel thresholding. Int. J. Hybrid Intell. Syst. 1, 143–152 (2004)CrossRefGoogle Scholar
  3. 3.
    Hammouche, K., Diaf, M., Siarry, P.: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng. Appl. Artif. Intell. 23, 676–688 (2010)CrossRefGoogle Scholar
  4. 4.
    Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. (2012). doi  10.1016/j.asoc.2012.03.072
  5. 5.
    Liao, P.-S., Chung, P.-C., Chen, T.-S.: A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng. 17, 713–727 (2001)Google Scholar
  6. 6.
    Otsu, N.: A threshold selection method from gray-level histograms. In: IEEE Transactions on Systems, Man, Cybernetics, SMC-9, pp. 62–66 (1979)Google Scholar
  7. 7.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 2, 273–285 (1985)Google Scholar
  8. 8.
    Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recogn. 19, 41–47 (1986)CrossRefGoogle Scholar
  9. 9.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imag. 13, 146–168 (2004)CrossRefGoogle Scholar
  10. 10.
    Sathya, P.D., Kayalvizhi, R.: Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst. Appl. 38, 15549–15564 (2011)CrossRefGoogle Scholar
  11. 11.
    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Agrawal, S., Panda, R., Bhuyan, S., Panigrahi, B.K.: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol. Comput. 11, 16–30 (2013)CrossRefGoogle Scholar
  13. 13.
    Portes de Albuquerque, M., Esquef, I.A., Gesualdi Mello, A.R.: Image thresholding using Tsallis entropy. Pattern Recogn. Lett. 25(9), 1059–1065 (2004)Google Scholar
  14. 14.
    Tsallis, C., Abe, S., Okamoto, Y.: Non-extensive statistical mechanics and its applications. In: Series Lecture Notes in Physics. Springer, Berlin (2001)Google Scholar
  15. 15.
    Tsallis, C.: Entropic non extensivity: a possible measure of complexity. Chaos Solitons Fractals 13, 371–391 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rényi, A.: On Measures of Entropy and Information, pp. 547–561. University California Press, Berkeley (1988)Google Scholar
  17. 17.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)Google Scholar
  18. 18.
    Yin, P.-Y.: A fast scheme for optimal thresholding using genetic algorithms. Sig. Process. 72, 85–95 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. Piscataway (1995)Google Scholar
  20. 20.
    Horng, M.: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst. Appl. 38, 13785–13791 (2011)Google Scholar
  21. 21.
    Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Stud. Comput. Intell. 203, 23–55 (2009)Google Scholar
  22. 22.
    Sathya, P.D., Kayalvizhi, R.: Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst. Appl. 38, 15549–15564 (2011)CrossRefGoogle Scholar
  23. 23.
    Sarkar, S., Das, S., Chaudhuri, S.: Multilevel image thresholding based on Tsallis entropy and differential evolution. In: Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, vol. 7677, pp. 17–24. Springer, Berlin (2012)Google Scholar
  24. 24.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kayalvizhi, R., Sathya, P.D.: PSO-based Tsallis thresholding selection procedure for image segmentation. Int. J. Comput. Appl. 5(4), 39–46 (2010)Google Scholar
  26. 26.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang, Y., Wu, L.: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. Entropy 13(4), 841–859 (2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    Yang, X., Deb, S.: Cuckoo search via levy flights. In: Proceedings of the World Congress on Nature and Biologically Inspired Computing, vol. 4, pp. 210–214. NABIC, Coimbatore (2009)Google Scholar
  29. 29.
    Das, S., Biswas, A., Dasgupta, S., Abraham, A.: Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Stud. Comput. Intell. Found. Comput. Intell. 3, 23–55 (2009)CrossRefGoogle Scholar
  30. 30.
    Agrawal, S., Panda, R., Bhuyan, S., Panigrahi, B.K.: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol. Comput. 11, 16–30 (2013)CrossRefGoogle Scholar
  31. 31.
    Sathya, P.D., Kayalvizhi, R.: Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst. Appl. 38, 15549–15564 (2011)CrossRefGoogle Scholar
  32. 32.
    Birbil, S.I., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25, 263–282 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rocha, A., Fernandes, E.: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems. Int. J. Comput. Math. 86, 1932–1946 (2009)CrossRefzbMATHGoogle Scholar
  34. 34.
    Rocha, A., Fernandes, E.: Modified movement force vector in an electromagnetism-like mechanism for global optimization. Optim. Meth. Softw. 24, 253–270 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Tsou, C.S., Kao, C.H.: Multi-objective inventory control using electromagnetism-like metaheuristic. Int. J. Prod. Res. 46, 3859–3874 (2008)CrossRefzbMATHGoogle Scholar
  36. 36.
    Wu, P., Yang, W.-H., Wei, N.-C.: An electromagnetism algorithm of neural network analysis an application to textile retail operation. J. Chin. Inst. Ind. Eng. 21(1), 59–67 (2004)Google Scholar
  37. 37.
    Birbil, S.I., Fang, S.C., Sheu, R.L.: On the convergence of a population-based global optimization algorithm. J. Glob. Optim. 30(2), 301–318 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Naderi, B., Tavakkoli-Moghaddam, R., Khalili, M.: Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan. Knowl.-Based Syst. 23, 77–85 (2010)CrossRefGoogle Scholar
  39. 39.
    Hung, H.-L., Huang, Y.-F.: Peak to average power ratio reduction of multicarrier transmission systems using electromagnetism-like method. Int. J. Innovative Comput. Inf. Control 7(5A), 2037–2050 (2011)Google Scholar
  40. 40.
    Yurtkuran, A., Emel, E.: A new hybrid electromagnetism-like algorithm for capacitated vehicle routing problems. Expert Syst. Appl. 37, 3427–3433 (2010)CrossRefGoogle Scholar
  41. 41.
    Jhang, J.-Y., Lee, K.-C.: Array pattern optimization using electromagnetism-like algorithm, AEU. Int. J. Electron. Commun. 63, 491–496 (2009)CrossRefGoogle Scholar
  42. 42.
    Lee, C.H., Chang, F.K.: Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Syst. Appl. 37, 8871–8878 (2010)CrossRefGoogle Scholar
  43. 43.
    Cuevas, E., Oliva, D., Zaldivar, D., Pérez-Cisneros, M., Sossa, H.: Circle detection using electromagnetism optimization. Inf. Sci. 182(1), 40–55 (2012)CrossRefGoogle Scholar
  44. 44.
    Guan, X., Dai, X., Li, J.: Revised electromagnetism-like mechanism for flow path design of unidirectional AGV systems. Int. J. Prod. Res. 49(2), 401–429 (2011)CrossRefGoogle Scholar
  45. 45.
    Hammouche, K., Diaf, M., Siarry, P.: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput. Vis. Image Underst. 109, 163–175 (2008)CrossRefGoogle Scholar
  46. 46.
    Pal, S.K., Bhandari, D., Kundu, M.K.: Genetic algorithms, for optimal image enhancement. Pattern Recogn. Lett. 15, 261–271 (1994)CrossRefzbMATHGoogle Scholar
  47. 47.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J. Heurist. (2008). doi: 10.1007/s10732-008-9080-4
  49. 49.
    Yang, X., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Modell. Numer. Optim. 4, 330–343 (2010)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Electrónica, CUCEIUniversidad de GuadalajaraGuadalajaraMexico
  2. 2.Tecnológico de Monterrey, Campus GuadalajaraZapopanMexico

Personalised recommendations