Skip to main content

Image Classification for Snake Species Using Machine Learning Techniques

  • Conference paper
  • First Online:
Computational Intelligence in Information Systems (CIIS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 532))

Abstract

This paper investigates the accuracy of five state-of-the-art machine learning techniques — decision tree J48, nearest neighbors, k-nearest neighbors (k-NN), backpropagation neural network, and naive Bayes — for image-based snake species identification problem. Conventionally, snake species identification is conducted manually based on the observation of the characteristics such head shape, body pattern, body color, and eyes shape. Images of 22 species of snakes that can be found in Malaysia were collected into a database, namely the Snakes of Perlis Corpus. Then, an intelligent approach is proposed to automatically identify a snake species based on an image which is useful for content retrieval purpose where a snake species can be predicted whenever a snake image is given as input. Our experiment shows that backpropagation neural network and nearest neighbour are highly accurate with greater than 87 % accuracy on CEDD descriptor in this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anuar, S., Selamat, A., Sallehuddin, R.: Hybrid artificial neural network with artificial bee colony algorithm for crime classification. In: Phon-Amnuaisuk, S., Au, T.W. (eds.) Computational Intelligence in Information Systems. AISC, vol. 331, pp. 31–40. Springer, Heidelberg (2015). doi:10.1007/978-3-319-13153-5_4

    Google Scholar 

  2. Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A.,Scuse, D.: WEKA Manual for Version 3-7-11 (April 2014). http://www.cs.waikato.ac.nz/ml/weka/documentation.html

  3. Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79547-6_30

    Chapter  Google Scholar 

  4. Chew, K.S., Khor, H.W., Ahmad, R., Rahman, N.A.H.N.: A five-year retrospective review of snakebite patients admitted to a tertiary university hospital in malaysia. Int. J. Emerg. Med. 4(1), 1–6 (2011)

    Article  Google Scholar 

  5. Christiansen, P., Steen, K.A., Jrgensen, R.N., Karstoft, H.: Automated detection and recognition of wildlife using thermal cameras. Sensors 14(8), 13778 (2014)

    Article  Google Scholar 

  6. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (2006). http://dx.doi.org/10.1109/TIT.1967.1053964

    Article  MATH  Google Scholar 

  7. Faria, F.A., Almeida, J., Alberton, B., Morellato, L.P.C., Rocha, A., da Torres, R.S.: Time series-based classifier fusion forfine-grained plant species recognition. Pattern Recogn. Lett. 81, 101–109 (2015)

    Article  Google Scholar 

  8. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2–3), 131–163 (1997)

    Article  MATH  Google Scholar 

  9. Gray, M.J., Chamberlain, M.J., Buehler, D.A., Sutton, W.B.: Wetlandwildlife monitoring and assessment. In: Anderson, T.J., Davis, A.C. (eds.) Wetland Techniques: Volume 2: Organisms, pp. 265–318. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  10. James, A.P., Mathews, B., Sugathan, S., Raveendran, D.K.: Discriminative histogram taxonomy features for snake species identification. Human-Centric Comput. Inf. Sci. 4(1), 1–11 (2014)

    Article  Google Scholar 

  11. JFeatureLib: JFeatureLib: A free java library containing feature descriptorsand detectors, April 2016. http://code.google.com/p/jfeaturelib/. Accessed 6 Apr 2015

  12. Kang, S.H., Song, S.H., Lee, S.H.: Identification of butterfly species with a single neural network system. J. Asia-Pacific Entomol. 15(3), 431–435 (2012)

    Article  Google Scholar 

  13. Kasturiratne, A., Wickremasinghe, A.R., de Silva, N., Gunawardena, N.K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D.G., de Silva, H.J.: The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5(11), 1–14 (2008)

    Article  Google Scholar 

  14. Li, J., Cheng, J.H., Shi, J.Y., Huang, F.: Brief introduction of back propagation (bp) neural network algorithm and its improvement. In: Jin, D., Lin, S. (eds.) Advances in Computer Science and Information Engineering. AISC, vol. 2, pp. 553–558. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Meek, P.D., Ballard, G.A., Fleming, P.J.S.: The pitfalls of wildlife camera trapping as a survey tool in australia. Aust. Mammal. 37, 13–22 (2015)

    Article  Google Scholar 

  16. Parikh, M., Patel, M., Bhatt, D.: Animal detection using template matching algorithm. Int. J. Res. Mod. Eng. Emerg. Technol. 1(3), 26–32 (2013)

    Google Scholar 

  17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  18. Rangdal, M.B., Hanchate, D.B.: Animal detection using histogram oriented gradient. Int. J. Recent Innov. Trends Comput. Commun. 2(2), 178–183 (2014)

    Google Scholar 

  19. Warrel, D.: Guidelines for the management of Snake-Bites. World Health Organization (2010)

    Google Scholar 

  20. Yu, X., Wang, J., Kays, R., Jansen, P.A., Wang, T., Huang, T.: Automated identification of animal species in camera trap images. EURASIP J. Image Video Process. 2013(1), 1–10 (2013)

    Article  Google Scholar 

  21. Zamri, M.I.P., Cordova, F., Khairuddin, A.S.M., Mokhtar, N., Yusof, R.: Tree species classification based on image analysis using improved-basic gray level aura matrix. Comput. Electron. Agric. 124, 227–233 (2016)

    Article  Google Scholar 

  22. Zhao, P., Dou, G., Chen, G.S.: Wood species identification using feature-level fusion scheme. Optik Int. J. Light Electron Optics 125(3), 1144–1148 (2014)

    Article  Google Scholar 

  23. Zhao, P., Dou, G., Chen, G.S.: Wood species identification using improved active shape model. Optik Int. J. Light Electron Optics 125(18), 5212–5217 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Taman Ular & Reptilia, Perlis and the School of Computer and Communication Engineering for the facilities provided in conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiza Amir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Amir, A., Zahri, N.A.H., Yaakob, N., Ahmad, R.B. (2017). Image Classification for Snake Species Using Machine Learning Techniques. In: Phon-Amnuaisuk, S., Au, TW., Omar, S. (eds) Computational Intelligence in Information Systems. CIIS 2016. Advances in Intelligent Systems and Computing, vol 532. Springer, Cham. https://doi.org/10.1007/978-3-319-48517-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48517-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48516-4

  • Online ISBN: 978-3-319-48517-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics