Skip to main content

The Climate of Península Valdés Within a Regional Frame

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Peninsula Valdés shares with the whole of Eastern Patagonia the main features of the regional climate, i.e. scarce rainfall, strong winds and cool-temperate temperatures. Not with standing it has an ill-defined climate because of its geographical location not far from the transitional area, where Pacific and Atlantic air masses merge. Also, because of its latitude (42°–43° S), the southward migration of the subtropical anticyclones is still noticeable over the area in summer. This chapter aims to explain the interplay between large scaled factors as the above-mentioned, and local ones as the almost insularity of the study area. A concise description of the climate is presented through the usual basic elements, temperature, precipitation, and wind. The maritime influence upon these variables is evaluated. It is shown that although mostly commanded by the rain-shadowed westerlies as the entire Patagonia, the climate of Peninsula Valdés has singularities that make it a less arid, more even, and milder climate which presents some Mediterranean features. Historic trends of rainfall and temperature are discussed and appear to be in agreement with global warming projections, according to which future scenarios would be drier and warmer in the Península Valdés region.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   109.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   109.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Ranges of “Mediterraneity” are: MI > 2 Mediterranean climate; 2 > MI > 1.5 sub-Mediterranean; 1.5 > MI > 1 attenuated Mediterranean; MI < 1 non-Mediterranean.

References

  • Ablaster J, Meehl G (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905

    Article  Google Scholar 

  • Agosta E, Compagnucci R, Ariztegui D (2015) Precipitation linked to atlantic moisture transport: clues to interpret patagonian palaeoclimate. Clim Res 62(3):219–240

    Article  Google Scholar 

  • Alvarez MP et al (2013) Estimación de recarga en zonas áridas según distintos métodos. Área medanosa del sur de Península Valdés (provincia de Chubut). In: González N et al (eds) Agua subterránea recurso estratégico, vol 1, pp 46–51

    Google Scholar 

  • Alvarez MP (2010) Investigación geohidrológica en un sector de Península Valdés, provincia de Chubut. Ph.D. Thesis. Universidad Nacional de La Plata

    Google Scholar 

  • Barros V, Scian B, Mattio H (1979) Mapas de precipitación de la Provincia de Chubut. CENPAT-Recursos Hídricos de Chubut, Rawson

    Google Scholar 

  • Barros V, Vera C (coordinators) and collaborators, Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2014) Tercera Comunicación Nacional sobre Cambio Climático. Cambio Climático en Argentina; Tendencias y Proyecciones (CIMA), Buenos Aires

    Google Scholar 

  • Bell N (1981) Precipitation. In: Goodall D, Perry R (eds) Arid land ecosystems. Cambridge University Press, Cambridge, pp 373–393

    Google Scholar 

  • Berman A (2012) Análisis de la variabilidad climática en la Patagonia Argentina. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5123_Berman.pdf

  • Berman A, Silvestri G, Compagnucci R (2013) On the variability of seasonal temperature in southern South America. Clim Dyn 40(7–8):1863–1878

    Article  Google Scholar 

  • Blázquez J, Nuñez M, Kusunoki S (2012) Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos Clim Sci 2:381–400

    Google Scholar 

  • Boninsegna J et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228

    Article  Google Scholar 

  • Campagnucci R, Araneo D (2007) Alcances de El Niño como predictor del caudal de los ríos andinos argentinos. Ingeniería Hidráulica en México 22(3):23–35

    Google Scholar 

  • Carrica J (2009) Cálculo de la recarga en zonas áridas y semiáridas. Recarga de acuíferos. Aspectos generales y particulares en regiones áridas. VI Congreso Argentino de Hidrogeología, Santa Rosa, La Pampa, pp 71–80

    Google Scholar 

  • Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmósfera 21(3):303–317

    Google Scholar 

  • Coronato F (1993) Wind chill factor applied to Patagonian climatology. Int J Biometeorol 37:1–6

    Article  Google Scholar 

  • Coronato F (1994) Influence of the eastern central Patagonia plateaus on the oceanic characteristics of the climate. Anales del Instituto de la Patagonia: Serie Ciencias Naturales Punta Arenas (Chile) 21:131–146

    Google Scholar 

  • Coronato F, Bisigato A (1998) A temperature pattern classification in Patagonia. Int J Climatol 18:765–773

    Article  Google Scholar 

  • Coronato A et al (2008) Physical geography of Patagonia. In: Rabassa J (ed) The Late Cenozoic of Patagonia and Tierra del Fuego. Development in Quaternary Sciences, vol 11. Elsevier, pp 13–55

    Google Scholar 

  • Daget Ph (1968) Quelques remarques sur le degré de continentalité des climats de la région holarctique CNRS-CEPE

    Google Scholar 

  • De Fina A et al (1968) Difusión de cultivos índices en la provincia del Chubut. Publicación N 110. INTA, Buenos Aires

    Google Scholar 

  • Del Valle H et al (2008) Sand dune activity in north-eastern Patagonia. J Arid Environ 72:411–422

    Article  Google Scholar 

  • Deser C et al (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546

    Article  Google Scholar 

  • Garreaud R, Aceituno P (2007) Atmospheric circulation and climate variability. In: Veblen T, Young K, Orme A (eds) The physical geography of South America. Oxford University Press, pp 45–59

    Google Scholar 

  • Garreaud R et al (2008) Present-day South American climate. PALAEO3 Special Issue (LOTRED South America) 281:180–195

    Google Scholar 

  • Garreaud R (2009) The Andes climate and weather. Adv Geosci 7:1–9

    Google Scholar 

  • Garreaud R et al (2013) Large-scale control on the Patagonian climate. J Clim 26:215–230

    Article  Google Scholar 

  • Geiger R, Pohl W (1953) Revision of the Köppen-Geiger Klimakarte der Erde. Erdkunde 8:58–61

    Google Scholar 

  • Gillett N, Kell N, Jones P (2006) Regional climate impacts of the southern annular mode. Geophys Res Lett 33:L23704. Doi:10.1029/2006GL027721

    Article  Google Scholar 

  • González M, Vera C (2010) On the interannual wintertime rainfall variability in the southern Andes. Int J Climatol 30:643–657

    Google Scholar 

  • González M, Skansi M, Losano F (2010) Statistical study of seasonal winter rainfall prediction in the Comahue region (Argentina). Atmósfera 23:277–294

    Google Scholar 

  • González P et al (2014) Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America. Clim Dyn 42:1775–1792

    Article  Google Scholar 

  • Hobbs J, Lindesay J, Bridgman H (1998) Climates of the southern continents: present, past, and future. Wiley, New Jersey, USA

    Google Scholar 

  • Insel N, Poulsen C, Ehlers T (2010) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35(7):1477–1492

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker T et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jacques-Coper M et al (2015) Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale. Int J Climatol. Doi:10.1002/joc.4430

    Google Scholar 

  • Jacques-Coper M et al (2015b) Evidence for a modulation of the intraseasonal summer temperature in Eastern Patagonia by the Madden-Julian oscillation. J Geophys Res Atmos. Doi:10.1002/2014jd022924

  • Jobbágy E, Paruelo J, León R (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol Austral 5:47–53

    Google Scholar 

  • Karoly D (1990) The role of transient eddies in low-frequency zonal variations of the southern hemisphere circulation. Tellus Ser A 42:41–50

    Article  Google Scholar 

  • Kidson J (1988) Interannual variations in the southern hemisphere circulation. J Clim 1:1177–1198

    Article  Google Scholar 

  • Labraga J, Davies E (2014) CENPAT-Unidad de Investigación de Oceanografía y Meteorología. http://www.cenpat.edu.ar/fisicambien/climaPM.htm. Accessed 18 Oct 2014

  • Labraga J, Villalba R (2009) Climate in the Monte Desert: past trends, present conditions, and future projections. J Arid Environ 73(2):154–163

    Article  Google Scholar 

  • Le Houerou H (2005) The isoclimatic Mediterranean biomes: bioclimatology, diversity and phytogeography. Montpellier, France, 766 p

    Google Scholar 

  • Le Houérou H (2004) An agro-bioclimatic classification of arid and semiarid lands in the isoclimatic Mediterranean Zones. Arid Land Res Manag 18:301–346

    Article  Google Scholar 

  • Lenaerts J et al (2014) Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. J Clim 27:4607–4621

    Article  Google Scholar 

  • León R et al (1998) Grandes unidades de vegetación de la Patagonia Extra Andina. Ecol Aust 8:125–144

    Google Scholar 

  • MAB 7 (1977) Map of the world distribution of arid regions. UNESCO, Paris, p 55

    Google Scholar 

  • Masiokas M et al (2008) 20th-century glaciar recession and regional hydroclimatic changes in the northwestern Patagonia. Global Planet Change 60:85–100

    Article  Google Scholar 

  • Müller G, Ambrizzi T, Nuñez M (2005) Mean atmospheric circulation leading to generalized frosts in central southern South America. Theor Appl Climatol 82:95–112

    Article  Google Scholar 

  • Nuñez M, Solman S, Cabré M (2009) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn 32:1081–1095

    Article  Google Scholar 

  • Paruelo J et al (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Aust 8:85–101

    Google Scholar 

  • Prohaska F (1976) The climate of Argentina, Paraguay, and Uruguay. In: Schwerdtgefer W (ed) Climates of Central and South America, vol 12. World Survey of Climatology, Elsevier, pp 57–69

    Google Scholar 

  • Rosenblüth B, Fuenzalida H, Aceituno P (1997) Recent temperature variations in Southern South America. Int J Climatol 17:67–85

    Article  Google Scholar 

  • Rusticucci M, Vargas W (2002) Cold and warm events over Argentina and their relationship with the ENSO phases: risk evaluation analysis. Int J Climatol 22:467–483

    Article  Google Scholar 

  • Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes in Argentina. J Climate 17:4099–4107

    Article  Google Scholar 

  • Schneider C, Gies D (2004) Effects of El Niño-Southern oscillation on southernmost South America precipitation at 53° S revealed from NCEP–NCAR reanalysis and weather station data. Int J Climatol 24:1057–1076

    Article  Google Scholar 

  • Silvestri G, Vera C (2009) Nonstationary impacts of the southern annular mode on southern hemisphere climate. J Clim 22:6142–6148

    Article  Google Scholar 

  • Smith R, Evans J (2007) Orographic precipitation and water vapor fractionation over the Southern Andes. J Hydrometeorol 8:3–19

    Article  Google Scholar 

  • Thornthwaite C, Mather J (1957) Instructions and tables for computing potential evapotranspiration and water balance. Publ Cimatol 10:185–311

    Google Scholar 

  • Turner J (2004) Review: the El Niño-Southern oscillation and Antarctica. Int J Climatol 24:1–31

    Article  Google Scholar 

  • Villalba R et al (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Change 59:177–232

    Article  Google Scholar 

  • Villalba R et al (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the southern annular mode. Nat Geosci 5(11):793–798

    Article  Google Scholar 

  • Vincent L, Peterson T, Barros V (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Climate 18:5011–5023

    Article  Google Scholar 

  • Zhu J et al (2014) Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina). Clim Past 10:2153–2169

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Federico Robledo (FCEN-UBA) and Dr. Juan Rivera (IANIGLA-CCT Mendoza-CONICET) for the revision of our manuscript and their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Coronato .

Editor information

Editors and Affiliations

Glossary

Cryosphere

Are those portions of Earth’s surface, where water is in solid form, i.e. water bodies ice, snow cover, glaciers, ice sheets and frozen ground. It plays a significant role in the global climate

ENSO

(El Niño–Southern Oscillation) Is an irregularly periodical variation in winds and sea surface temperatures over the tropical eastern Pacific Ocean, affecting much of the tropics and subtropics

Frontal activity

Sharp discontinuities of temperature, moisture and wind properties caused by the displacement of boundaries between air mass (fronts), set in motion by low pressure cells and often entailing storms and rainfall

PET

(Potential Evapotranspiration) Maximum quantity of water capable of being evaporated in a given climate from a continuous stretch of vegetation covering the whole ground and well supplied with water

Storm Tracks

Relatively narrow zones in oceans where cyclone-generated storms travel driven by the prevailing winds. Cyclones from the circumpolar storm track in the Antarctic Ocean may derive northward and affect Patagonia

Synoptic-scale disturbances

Are those fit in a horizontal length scale of the order of 1000 km or more. This corresponds to a horizontal scale typical of mid-latitude depressions

Westerlies

Prevailing flux from the west in the mid-latitudes emanating from the polarward sides of the subtropical high-pressure cells. Those of the southern hemisphere are stronger and more constant

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Coronato, F., Pessacg, N., Alvarez, M.d.P. (2017). The Climate of Península Valdés Within a Regional Frame. In: Bouza, P., Bilmes, A. (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-48508-9_4

Download citation

Publish with us

Policies and ethics