Abstract
Peninsula Valdés shares with the whole of Eastern Patagonia the main features of the regional climate, i.e. scarce rainfall, strong winds and cool-temperate temperatures. Not with standing it has an ill-defined climate because of its geographical location not far from the transitional area, where Pacific and Atlantic air masses merge. Also, because of its latitude (42°–43° S), the southward migration of the subtropical anticyclones is still noticeable over the area in summer. This chapter aims to explain the interplay between large scaled factors as the above-mentioned, and local ones as the almost insularity of the study area. A concise description of the climate is presented through the usual basic elements, temperature, precipitation, and wind. The maritime influence upon these variables is evaluated. It is shown that although mostly commanded by the rain-shadowed westerlies as the entire Patagonia, the climate of Peninsula Valdés has singularities that make it a less arid, more even, and milder climate which presents some Mediterranean features. Historic trends of rainfall and temperature are discussed and appear to be in agreement with global warming projections, according to which future scenarios would be drier and warmer in the Península Valdés region.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Ranges of “Mediterraneity” are: MI > 2 Mediterranean climate; 2 > MI > 1.5 sub-Mediterranean; 1.5 > MI > 1 attenuated Mediterranean; MI < 1 non-Mediterranean.
References
Ablaster J, Meehl G (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905
Agosta E, Compagnucci R, Ariztegui D (2015) Precipitation linked to atlantic moisture transport: clues to interpret patagonian palaeoclimate. Clim Res 62(3):219–240
Alvarez MP et al (2013) Estimación de recarga en zonas áridas según distintos métodos. Área medanosa del sur de Península Valdés (provincia de Chubut). In: González N et al (eds) Agua subterránea recurso estratégico, vol 1, pp 46–51
Alvarez MP (2010) Investigación geohidrológica en un sector de Península Valdés, provincia de Chubut. Ph.D. Thesis. Universidad Nacional de La Plata
Barros V, Scian B, Mattio H (1979) Mapas de precipitación de la Provincia de Chubut. CENPAT-Recursos Hídricos de Chubut, Rawson
Barros V, Vera C (coordinators) and collaborators, Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2014) Tercera Comunicación Nacional sobre Cambio Climático. Cambio Climático en Argentina; Tendencias y Proyecciones (CIMA), Buenos Aires
Bell N (1981) Precipitation. In: Goodall D, Perry R (eds) Arid land ecosystems. Cambridge University Press, Cambridge, pp 373–393
Berman A (2012) Análisis de la variabilidad climática en la Patagonia Argentina. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5123_Berman.pdf
Berman A, Silvestri G, Compagnucci R (2013) On the variability of seasonal temperature in southern South America. Clim Dyn 40(7–8):1863–1878
Blázquez J, Nuñez M, Kusunoki S (2012) Climate projections and uncertainties over South America from MRI/JMA global model experiments. Atmos Clim Sci 2:381–400
Boninsegna J et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228
Campagnucci R, Araneo D (2007) Alcances de El Niño como predictor del caudal de los ríos andinos argentinos. Ingeniería Hidráulica en México 22(3):23–35
Carrica J (2009) Cálculo de la recarga en zonas áridas y semiáridas. Recarga de acuíferos. Aspectos generales y particulares en regiones áridas. VI Congreso Argentino de Hidrogeología, Santa Rosa, La Pampa, pp 71–80
Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonia region in southern South America. Atmósfera 21(3):303–317
Coronato F (1993) Wind chill factor applied to Patagonian climatology. Int J Biometeorol 37:1–6
Coronato F (1994) Influence of the eastern central Patagonia plateaus on the oceanic characteristics of the climate. Anales del Instituto de la Patagonia: Serie Ciencias Naturales Punta Arenas (Chile) 21:131–146
Coronato F, Bisigato A (1998) A temperature pattern classification in Patagonia. Int J Climatol 18:765–773
Coronato A et al (2008) Physical geography of Patagonia. In: Rabassa J (ed) The Late Cenozoic of Patagonia and Tierra del Fuego. Development in Quaternary Sciences, vol 11. Elsevier, pp 13–55
Daget Ph (1968) Quelques remarques sur le degré de continentalité des climats de la région holarctique CNRS-CEPE
De Fina A et al (1968) Difusión de cultivos índices en la provincia del Chubut. Publicación N 110. INTA, Buenos Aires
Del Valle H et al (2008) Sand dune activity in north-eastern Patagonia. J Arid Environ 72:411–422
Deser C et al (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546
Garreaud R, Aceituno P (2007) Atmospheric circulation and climate variability. In: Veblen T, Young K, Orme A (eds) The physical geography of South America. Oxford University Press, pp 45–59
Garreaud R et al (2008) Present-day South American climate. PALAEO3 Special Issue (LOTRED South America) 281:180–195
Garreaud R (2009) The Andes climate and weather. Adv Geosci 7:1–9
Garreaud R et al (2013) Large-scale control on the Patagonian climate. J Clim 26:215–230
Geiger R, Pohl W (1953) Revision of the Köppen-Geiger Klimakarte der Erde. Erdkunde 8:58–61
Gillett N, Kell N, Jones P (2006) Regional climate impacts of the southern annular mode. Geophys Res Lett 33:L23704. Doi:10.1029/2006GL027721
González M, Vera C (2010) On the interannual wintertime rainfall variability in the southern Andes. Int J Climatol 30:643–657
González M, Skansi M, Losano F (2010) Statistical study of seasonal winter rainfall prediction in the Comahue region (Argentina). Atmósfera 23:277–294
González P et al (2014) Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America. Clim Dyn 42:1775–1792
Hobbs J, Lindesay J, Bridgman H (1998) Climates of the southern continents: present, past, and future. Wiley, New Jersey, USA
Insel N, Poulsen C, Ehlers T (2010) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35(7):1477–1492
IPCC (2013) Climate change 2013: the physical science basis. In: Stocker T et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK
Jacques-Coper M et al (2015) Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale. Int J Climatol. Doi:10.1002/joc.4430
Jacques-Coper M et al (2015b) Evidence for a modulation of the intraseasonal summer temperature in Eastern Patagonia by the Madden-Julian oscillation. J Geophys Res Atmos. Doi:10.1002/2014jd022924
Jobbágy E, Paruelo J, León R (1995) Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol Austral 5:47–53
Karoly D (1990) The role of transient eddies in low-frequency zonal variations of the southern hemisphere circulation. Tellus Ser A 42:41–50
Kidson J (1988) Interannual variations in the southern hemisphere circulation. J Clim 1:1177–1198
Labraga J, Davies E (2014) CENPAT-Unidad de Investigación de Oceanografía y Meteorología. http://www.cenpat.edu.ar/fisicambien/climaPM.htm. Accessed 18 Oct 2014
Labraga J, Villalba R (2009) Climate in the Monte Desert: past trends, present conditions, and future projections. J Arid Environ 73(2):154–163
Le Houerou H (2005) The isoclimatic Mediterranean biomes: bioclimatology, diversity and phytogeography. Montpellier, France, 766 p
Le Houérou H (2004) An agro-bioclimatic classification of arid and semiarid lands in the isoclimatic Mediterranean Zones. Arid Land Res Manag 18:301–346
Lenaerts J et al (2014) Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. J Clim 27:4607–4621
León R et al (1998) Grandes unidades de vegetación de la Patagonia Extra Andina. Ecol Aust 8:125–144
MAB 7 (1977) Map of the world distribution of arid regions. UNESCO, Paris, p 55
Masiokas M et al (2008) 20th-century glaciar recession and regional hydroclimatic changes in the northwestern Patagonia. Global Planet Change 60:85–100
Müller G, Ambrizzi T, Nuñez M (2005) Mean atmospheric circulation leading to generalized frosts in central southern South America. Theor Appl Climatol 82:95–112
Nuñez M, Solman S, Cabré M (2009) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn 32:1081–1095
Paruelo J et al (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Aust 8:85–101
Prohaska F (1976) The climate of Argentina, Paraguay, and Uruguay. In: Schwerdtgefer W (ed) Climates of Central and South America, vol 12. World Survey of Climatology, Elsevier, pp 57–69
Rosenblüth B, Fuenzalida H, Aceituno P (1997) Recent temperature variations in Southern South America. Int J Climatol 17:67–85
Rusticucci M, Vargas W (2002) Cold and warm events over Argentina and their relationship with the ENSO phases: risk evaluation analysis. Int J Climatol 22:467–483
Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes in Argentina. J Climate 17:4099–4107
Schneider C, Gies D (2004) Effects of El Niño-Southern oscillation on southernmost South America precipitation at 53° S revealed from NCEP–NCAR reanalysis and weather station data. Int J Climatol 24:1057–1076
Silvestri G, Vera C (2009) Nonstationary impacts of the southern annular mode on southern hemisphere climate. J Clim 22:6142–6148
Smith R, Evans J (2007) Orographic precipitation and water vapor fractionation over the Southern Andes. J Hydrometeorol 8:3–19
Thornthwaite C, Mather J (1957) Instructions and tables for computing potential evapotranspiration and water balance. Publ Cimatol 10:185–311
Turner J (2004) Review: the El Niño-Southern oscillation and Antarctica. Int J Climatol 24:1–31
Villalba R et al (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Change 59:177–232
Villalba R et al (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the southern annular mode. Nat Geosci 5(11):793–798
Vincent L, Peterson T, Barros V (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Climate 18:5011–5023
Zhu J et al (2014) Climate history of the Southern Hemisphere Westerlies belt during the last glacial–interglacial transition revealed from lake water oxygen isotope reconstruction of Laguna Potrok Aike (52° S, Argentina). Clim Past 10:2153–2169
Acknowledgements
We acknowledge Dr. Federico Robledo (FCEN-UBA) and Dr. Juan Rivera (IANIGLA-CCT Mendoza-CONICET) for the revision of our manuscript and their valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Glossary
- Cryosphere
-
Are those portions of Earth’s surface, where water is in solid form, i.e. water bodies ice, snow cover, glaciers, ice sheets and frozen ground. It plays a significant role in the global climate
- ENSO
-
(El Niño–Southern Oscillation) Is an irregularly periodical variation in winds and sea surface temperatures over the tropical eastern Pacific Ocean, affecting much of the tropics and subtropics
- Frontal activity
-
Sharp discontinuities of temperature, moisture and wind properties caused by the displacement of boundaries between air mass (fronts), set in motion by low pressure cells and often entailing storms and rainfall
- PET
-
(Potential Evapotranspiration) Maximum quantity of water capable of being evaporated in a given climate from a continuous stretch of vegetation covering the whole ground and well supplied with water
- Storm Tracks
-
Relatively narrow zones in oceans where cyclone-generated storms travel driven by the prevailing winds. Cyclones from the circumpolar storm track in the Antarctic Ocean may derive northward and affect Patagonia
- Synoptic-scale disturbances
-
Are those fit in a horizontal length scale of the order of 1000 km or more. This corresponds to a horizontal scale typical of mid-latitude depressions
- Westerlies
-
Prevailing flux from the west in the mid-latitudes emanating from the polarward sides of the subtropical high-pressure cells. Those of the southern hemisphere are stronger and more constant
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Coronato, F., Pessacg, N., Alvarez, M.d.P. (2017). The Climate of Península Valdés Within a Regional Frame. In: Bouza, P., Bilmes, A. (eds) Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-48508-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-48508-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48507-2
Online ISBN: 978-3-319-48508-9
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)
