Skip to main content

Evolution of Cellular Automata-Based Replicating Structures Exhibiting Unconventional Features

  • Conference paper
  • First Online:
Computational Intelligence (IJCCI 2015)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 669))

Included in the following conference series:

  • 741 Accesses

Abstract

Replicating loops represent a class of benchmarks, which is commonly studied in relation with cellular automata. Most of the known loops, for which replication rules exist in two-dimensional cellular space, create the copies of themselves using a certain construction algorithm that is common for all the emerging replicas. In such cases, the replication starts from a single instance of the loop (represented as the initial state of the cellular automaton) and is controlled by the transition function of the automaton according to which the copies of the loop are developed. Despite the fact that universal replicators in cellular automata are possible (for example, von Neumann’s Universal Constructor), the process of replication of the loops is usually specific to the shape of the loop and the replication rules given by the transition function. This work presents a method for the automatic evolutionary design of cellular automata, which allows us to design transition functions for various structures that are able to replicate according to a given specification. It will be shown that new replicating loops can be discovered that exhibit some unconventional features in comparison with the known solutions. In particular, several scenarios will be presented which can, in addition to the replication from the initial loop, autonomously develop the given loop from a seed, with the ability of the loop to subsequently produce its replicas according to the given specification. Moreover, a parallel replicator will be shown that is able to develop the replicas to several directions using different replication algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview.

References

  1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 4, 2nd edn. A K Peters/CRC Press, Boca Raton (2004)

    Google Scholar 

  2. Bidlo, M.: Evolving multiplication as emergent behavior in cellular automata using conditionally matching rules. In: 2014 IEEE Congress on Evolutionary Computation, pp. 2001–2008. IEEE Computational Intelligence Society (2014)

    Google Scholar 

  3. Bidlo, M., Vasicek, Z.: Evolution of cellular automata with conditionally matching rules. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), pp. 1178–1185. IEEE Computer Society (2013)

    Google Scholar 

  4. Byl, J.: Self-reproduction in small cellular automata. Phys. D Nonlinear Phenom. 34(1–2), 295–299 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elmenreich, W., Fehérvári, I.: Evolving self-organizing cellular automata based on neural network genotypes. In: Bettstetter, C., Gershenson, C. (eds.) IWSOS 2011. LNCS, vol. 6557, pp. 16–25. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19167-1_2

    Chapter  Google Scholar 

  6. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)

    MATH  Google Scholar 

  7. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  8. Langton, C.G.: Self-reproduction in cellular automata. Phys. D Nonlinear Phenom. 10(1–2), 135–144 (1984)

    Article  MATH  Google Scholar 

  9. Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst. 7(2), 89–130 (1993)

    MATH  Google Scholar 

  10. Packard, N.H.: Adaptation toward the edge of chaos. In: Kelso, J.A.S., Mandell, A.J., Shlesinger, M.F. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singapore (1988)

    Google Scholar 

  11. Perrier, J.-Y., Sipper, M., Zahnd, J.: Toward a viable, self-reproducing universal computer. Phys. D 97, 335–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Reggia, J.A., Armentrout, S.L., Chou, H.-H., Peng, Y.: Simple systems that exhibit self-directed replication. Science 259(5099), 1282–1287 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sapin, E., Adamatzky, A., Collet, P., Bull, L.: Stochastic automated search methods in cellular automata: the discovery of tens of thousands of glider guns. Natural Comput. 9(3), 513–543 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sapin, E., Bull, L.: Searching for glider guns in cellular automata: exploring evolutionary and other techniques. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 255–265. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79305-2_22

    Chapter  Google Scholar 

  15. Sipper, M.: Quasi-uniform computation-universal cellular automata. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 544–554. Springer, Heidelberg (1995). doi:10.1007/3-540-59496-5_324

    Chapter  Google Scholar 

  16. Sipper, M. (ed.): Evolution of Parallel Cellular Machines. LNCS, vol. 1194. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  17. Sipper, M., Goeke, M., Mange, D., Stauffer, A., Sanchez, E., Tomassini, M.: Online evolware. In: IEEE International Conference on Evolutionary Computation, pp. 181–186 (1997)

    Google Scholar 

  18. Stefano, G., Navarra, A.: Scintillae: how to approach computing systems by means of cellular automata. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 534–543. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33350-7_55

    Chapter  Google Scholar 

  19. Tempesti, G.: A new self-reproducing cellular automaton capable of construction and computation. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 555–563. Springer, Heidelberg (1995). doi:10.1007/3-540-59496-5_325

    Chapter  Google Scholar 

  20. von Neumann, J.: Theory of self-reproducing automata. In: Burks, A.W. (ed.) Essays on Cellular Automata. University of Illinois Press, Urbana and London (1966)

    Google Scholar 

  21. Yunès, J.-B.: Achieving universal computations on one-dimensional cellular automata. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 660–669. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15979-4_74

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports of the Czech Republic from the National Programme of Sustainability (NPU II); project IT4Innovations excellence in science - LQ1602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Bidlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bidlo, M. (2017). Evolution of Cellular Automata-Based Replicating Structures Exhibiting Unconventional Features. In: Merelo, J.J., et al. Computational Intelligence. IJCCI 2015. Studies in Computational Intelligence, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-319-48506-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48506-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48504-1

  • Online ISBN: 978-3-319-48506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics