Skip to main content

Human Mortality Modeling with a Fuzzy Approach Based on Singular Value Decomposition Technique

  • Conference paper
  • First Online:
Book cover Computational Intelligence (IJCCI 2015)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 669))

Included in the following conference series:

Abstract

Modeling and forecasting human mortality are significant research topics in several disciplines because mortality rates are fundamental in planning and policy decisions. Among various techniques, Lee Carter (LC) model is one of the most popular stochastic method in human mortality modeling. The original LC model was fuzzified to eliminate the assumptions related with homoscedasticity. The existing fuzzy model makes use of ordinary least squares (OLS) technique, which prevents the model to capture the existing fluctuations in data. In this study, a revised version of fuzzy LC model utilizing singular value decomposition (SVD) technique is proposed to overcome this issue. After modeling the mortality rates, their future values are forecasted by a modified first order fuzzy time series technique. For illustration purposes, proposed method is applied to mortality data of Finland. Numerical outputs show that proposed method is statistically better in modeling mortality compared to the existing fuzzy method. In addition, the modified fuzzy time series technique generates better forecasts than the original version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Keyfitz, N.: Applied Mathematical Demography. Wiley, New York (1977)

    MATH  Google Scholar 

  2. Hyndman, R.J., Ullah, M.S.: Robust forecasting of mortality and fertility rates: a functional data approach. Comput. Stat. Data Anal. 51, 4942–4956 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. United Nations: Manuals on methods of estimating population - Manual VIII: Methods for Projections of Urban and Rural Population, Department of Economic and Social Affairs, Population Studies, No. 55, New York (1974)

    Google Scholar 

  4. Lindh, T.: Demography as a forecasting tool. Futures 35, 37–48 (2003)

    Article  Google Scholar 

  5. Ahmadi, S.S., Li, J.S.: Coherent mortality forecasting with generalized linear models: a modified time-transformation approach. Insur. Math. Econ. 59, 194–221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danesi, I.L., Haberman, S., Millossovich, P.: Forecasting mortality in subpopulations using Lee-Carter type models: a comparison. Insur. Math. Econ. 62, 151–161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. French, D.: International mortality modelling - an economic perspective. Econ. Lett. 122, 182–186 (2014)

    Article  Google Scholar 

  8. Booth, H.: Demographic forecasting: 1980 to 2005 in review. Int. J. Forecast. 22, 547–581 (2006)

    Article  Google Scholar 

  9. Lee, R.D., Carter, L.R.: Modelling and forecasting US mortality. J. Am. Stat. Assoc. 87, 659–671 (1992)

    MATH  Google Scholar 

  10. Lee, R.D., Tuljapurkar, S.: Stochastic population projections for the U.S.: beyond high, medium and low. J. Am. Stat. Assoc. 89(428), 1175–1189 (1994)

    Article  Google Scholar 

  11. Li, S.H., Chan, W.S.: Outlier analysis and mortality forecasting: the United Kingdom and Scandinavian countries. Scand. Actuarial J. 3, 187–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Jong, P., Tickle, L.: Extending Lee-Carter mortality forecasting. Math. Popul. Stud. 13, 1–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Renshaw, A.E., Haberman, S.: Lee-Carter mortality forecasting with age specific enhancement. Insur. Math. Econ. 33(2), 255–272 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brouhns, N., Denuit, M., Vermunt, J.K.: A Poisson log-bilinear approach to the construction of projected life tables. Insur. Math. Econ. 31(3), 373–393 (2002)

    Article  MATH  Google Scholar 

  15. Currie, I.D., Durban, M., Eilers, P.H.C.: Smoothing and forecasting mortality rates. Stat. Model. 4(4), 279–298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lazar, D., Denuit, M.: A multivariate time series approach to projected life tables. Appl. Stochast. Models Bus. Ind. 25(6), 806–823 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hatzopulos, P., Haberman, S.: A dynamic parameterization modeling for the age–period–cohort mortality. Insur. Math. Econ. 49, 155–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giacometti, R., Bertocchi, M., Rachev, S.T., Fabozzi, F.J.: A comparison of the Lee-Carter model and AR–ARCH model for forecasting mortality rates. Insur. Math. Econ. 50, 85–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Christiansen, M.C., Niemeyer, A., Teigiszerová, L.: Modeling and forecasting duration-dependent mortality rates. Comput. Stat. Data Anal. 83, 65–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ahcan, A., Medved, D., Olivieri, A., Pitacco, E.: Forecasting mortality for small populations by mixing mortality data. Insur. Math. Econ. 54, 12–27 (2014)

    Article  MathSciNet  Google Scholar 

  21. Lee, R.D.: The Lee-Carter method for forecasting mortality, with various extensions and applications. North Am. Actuarial J. 1(4), 80–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Koissi, M.C., Shapiro, A.F.: Fuzzy formulation of Lee-Carter model for mortality forecasting. Insur. Math. Econ. 39, 287–309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cybern. Syst. 2, 903–907 (1982)

    MATH  Google Scholar 

  24. Chang, Y.H.O., Ayyub, B.M.: Fuzzy regression methods – A comparative assessment. Fuzzy Sets Syst. 119, 187–203 (2001)

    Article  MathSciNet  Google Scholar 

  25. Song, Q., Chissom, B.S.: Forecasting enrollments with fuzzy time series – part I. Fuzzy Sets Syst. 54, 1–9 (1993)

    Article  Google Scholar 

  26. Mandel, J.: Use of the singular value decomposition in regression analysis. Am. Stat. 36(1), 15–24 (1982)

    Google Scholar 

  27. Meisar, R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets Syst. 86, 73–78 (1997)

    Article  MathSciNet  Google Scholar 

  28. Diamond, P.: Fuzzy least squares. Inf. Sci. 46, 141–157 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiu, W., Liu, X., Li, H.: A generalized method for forecasting based on fuzzy time series. Expert Syst. Appl. 38, 10446–10453 (2011)

    Article  Google Scholar 

  31. Huarng, K.: Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets Syst. 123, 387–394 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huarng, K., Yu, T.H.-K.: Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(2), 328–340 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygun Fatih Demirel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Demirel, D.F., Basak, M. (2017). Human Mortality Modeling with a Fuzzy Approach Based on Singular Value Decomposition Technique. In: Merelo, J.J., et al. Computational Intelligence. IJCCI 2015. Studies in Computational Intelligence, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-319-48506-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48506-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48504-1

  • Online ISBN: 978-3-319-48506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics