Advertisement

A More Efficient Algorithm to Mine Skyline Frequent-Utility Patterns

Conference paper
  • 687 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 536)

Abstract

In the past, a SKYMINE approach was proposed to both consider the aspects of utility and frequency of the itemsets to mine the skyline frequency-utility skyline patterns (SFUPs). The SKYMINE algorithm requires, however, the amounts of computation to mine the SFUPs based on the utility-pattern (UP)-tree structure performing in a level-wise manner. In this paper, we propose more effective algorithms to mine the SFUPs based on the utility-list structure. Substantial experiments are carried to show that the proposed algorithms outperform the state-of-the-art SKYMINE to mine the SFUPs in terms of runtime and memory usage.

Keywords

Skyline Utility Frequent Umax Utility-list 

Notes

Acknowledgment

This research was partially supported by the National Natural Science Foundation of China (NSFC) under grant No. 6150309.

References

  1. 1.
    Frequent itemset mining dataset repository (2012). http://fimi.ua.ac.be/data/
  2. 2.
    Afrati, F.N., Koutris, P., Suciu, D., Ullman, J.D.: Parallel skyline queries. Theory Comput. Syst. 57(4), 1008–1037 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: International Conference on Very Large Data Bases, pp. 487–499 (1994)Google Scholar
  4. 4.
    Agrawal, R., Srikant, R.: Quest synthetic data generator (1994). http://www.Almaden.ibm.com/cs/quest/syndata.html
  5. 5.
    Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Le, Y.K.: Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–1721 (2009)CrossRefGoogle Scholar
  6. 6.
    Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: International Conference on Data Engineering, pp. 421–430 (2001)Google Scholar
  7. 7.
    Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: IEEE International Conference on Data Mining, pp. 19–26 (2003)Google Scholar
  8. 8.
    Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: ACM SIGMOD International Conference on Management of Data, pp. 503–514 (2006)Google Scholar
  9. 9.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: International Conference on Data Engineering, pp. 717–720 (2003)Google Scholar
  10. 10.
    Goyal, V., Sureka, A., Patel, D.: Efficient skyline itemsets mining. In: The International C* Conference on Computer Science & Software Engineering, pp. 119–124 (2015)Google Scholar
  11. 11.
    Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In: IEEE ICDM Workshop on Frequent Itemset Mining Implementations (2003)Google Scholar
  12. 12.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGKDD International Conference on Management of Data, pp. 1–12 (2000)Google Scholar
  13. 13.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: International Conference on Very Large Data Bases, pp. 275–286 (2002)Google Scholar
  14. 14.
    Lin, C.W., Hong, T.P., Lu, W.H.: The pre-FUFP algorithm for incremental mining. Expert Syst. Appl. 36(5), 9498–9505 (2009)CrossRefGoogle Scholar
  15. 15.
    Lin, C.W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility itemsets. Expert Syst. Appl. 38(6), 7419–7424 (2011)CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005). doi: 10.1007/11430919_79 CrossRefGoogle Scholar
  17. 17.
    Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: ACM International Conference on Information and Knowledge Management, pp. 55–64 (2012)Google Scholar
  18. 18.
    Microsoft, Example database foodmart of Microsoft analysis services. http://msdn.microsoft.com/en-us/library/aa217032(SQL.80).aspx
  19. 19.
    Papadias, D., Tao, Y., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)CrossRefGoogle Scholar
  20. 20.
    Park, J.S., Chen, M.S., Yu, P.S.: An effective hash based algorithm for mining association rules. In: ACM SIGMOD International Conference on Management of Data, pp. 175–186 (1995)Google Scholar
  21. 21.
    Podpecan, V., Lavrac, N., Kononenko, I.: A fast algorithm for mining utility-frequent itemsets. In: International workshop on Constraint-based Mining and Learning, pp. 9–20 (2007)Google Scholar
  22. 22.
    Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association rules in large databases. In: International Conference on Very Large Databases, pp. 432–444 (1995)Google Scholar
  23. 23.
    Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: International Conference on Very Large Data Bases, pp. 301–310 (2001)Google Scholar
  24. 24.
    Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2012)CrossRefGoogle Scholar
  25. 25.
    Yao, H., Hamilton, H.J., Geng, L.: A unified framework for utility-based measures for mining itemsets. In: ACM SIGKDD International Conference on Utility-Based Data Mining, pp. 28–37 (2006)Google Scholar
  26. 26.
    Yeh, J.-S., Li, Y.-C., Chang, C.-C.: Two-phase algorithms for a novel utility-frequent mining model. In: Washio, T., et al. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4819, pp. 433–444. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77018-3_43 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina
  2. 2.School of Natural Sciences and HumanitiesHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina
  3. 3.Indraprastha Institute of Information TechnologyDelhiIndia
  4. 4.ABB Corporate ResearchBangaloreIndia
  5. 5.Faculty of Information TechnologyHo Chi Minh City University of TechnologyHo Chi Minh CityVietnam

Personalised recommendations