Advertisement

Sepsis pp 71-87 | Cite as

Sepsis-Induced Immune Suppression

Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

The pro-inflammatory cascade that occurs in response to overwhelming infection in the body has been well described. Less well delineated is the concomitant anti-inflammatory response that occurs either as a primary response to infection or as a secondary response to the original pro-inflammatory cascade. The net result is a decline in immune cell number and a loss of function of the surviving cells, making the body predisposed to secondary infection and subsequent death. General features of this response are “re-programming” at the cellular level, resulting in a transition from production of pro-inflammatory cytokines to anti-inflammatory cytokines, apoptosis of multiple immune effector cells, and immunoparalysis of other immune effector cells. This chapter will focus on sepsis-induced immune suppression, building from the level of cytokines and cellular function up to the organism level along with a discussion of potential therapeutic interventions to return the immune system to a state of homeostasis.

Keywords

Sepsis-induced immune suppression CARS MARS Immunoparalysis Anti-inflammatory Cytokines Immunomodulatory therapy 

References

  1. 1.
    Freeman BD, Natanson C. Anti-inflammatory therapies in sepsis and septic shock. Expert Opin Investig Drugs. 2000;9(7):1651–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med. 1996;24(7):1125–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Otto GP, Sossdorf M, Claus RA, Rödel J, Menge K, Reinhart K, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care. 2011;15(4):R183.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Luyt CE, Combes A, Deback C, Aubriot-Lorton MH, Nieszkowska A, Trouillet JL, et al. Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am J Respir Crit Care Med. 2007;175(9):935–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008;300(4):413–22.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med. 2008;29(4):617–25. viiiCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets—an updated view. Mediators Inflamm. 2013;2013:165974.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Novotny AR, Reim D, Assfalg V, Altmayr F, Friess HM, Emmanuel K, et al. Mixed antagonist response and sepsis severity-dependent dysbalance of pro- and anti-inflammatory responses at the onset of postoperative sepsis. Immunobiology. 2012;217(6):616–21.CrossRefPubMedGoogle Scholar
  9. 9.
    MacNeil IA, Suda T, Moore KW, Mosmann TR, Zlotnik A. IL-10, a novel growth cofactor for mature and immature T cells. J Immunol. 1990;145(12):4167–73.PubMedGoogle Scholar
  10. 10.
    O’Garra A, Stapleton G, Dhar V, Pearce M, Schumacher J, Rugo H, et al. Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int Immunol. 1990;2(9):821–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Oberholzer A, Oberholzer C, Moldawer LL. Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit Care Med. 2002;30(1 Supp):S58–63.CrossRefGoogle Scholar
  12. 12.
    Berg DJ, Kuhn R, Rajewsky K, Müller W, Menon S, Davidson N, et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest. 1995;96(5):2339–47.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Howard M, Muchamuel T, Andrade S, Menon S. Interleukin 10 protects mice from lethal endotoxemia. J Exp Med. 1993;177(4):1205–8.CrossRefPubMedGoogle Scholar
  14. 14.
    van der Poll T, Jansen PM, Montegut WJ, Braxton CC, Calvano SE, Stackpole SA, et al. Effects of IL-10 on systemic inflammatory responses during sublethal primate endotoxemia. J Immunol. 1997;158(4):1971–5.PubMedGoogle Scholar
  15. 15.
    Remick DG, Garg SJ, Newcomb DE, Wollenberg G, Huie TK, Bolgos GL. Exogenous interleukin-10 fails to decrease the mortality or morbidity of sepsis. Crit Care Med. 1998;26(5):895–904.CrossRefPubMedGoogle Scholar
  16. 16.
    Steinhauser ML, Hogaboam CM, Kunkel SL, Lukacs NW, Strieter RM, Standiford TJ. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol. 1999;162(1):392–9.PubMedGoogle Scholar
  17. 17.
    Ashare A, Powers LS, Butler NS, Doerschug KC, Monick MM, Hunninghake GW. Anti-inflammatory response is associated with mortality and severity of infection in sepsis. Am J Physiol Lung Cell Mol Physiol. 2005;288(4):L633–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Song GY, Chung CS, Chaudry IH, Ayala A. What is the role of interleukin 10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery. 1999;126(2):378–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Keane RM, Birmingham W, Shatney CM, Winchurch RA, Munster AM. Prediction of sepsis in the multitraumatic patient by assays of lymphocyte responsiveness. Surg Gynecol Obstet. 1983;156(2):163–7.PubMedGoogle Scholar
  20. 20.
    Green DR, Beere HM. Apoptosis. Gone but not forgotten. Nature. 2000;405(6782):28–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. 1999;27(7):1230–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Hotchkiss RS, Schmieg Jr RE, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, et al. Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit Care Med. 2000;28(9):3207–17.CrossRefPubMedGoogle Scholar
  23. 23.
    Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg Jr RE, Hui JJ, Chang KC, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166(11):6952–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Tinsley KW, Grayson MH, Swanson PE, Drewry AM, Chang KC, Karl IE, et al. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol. 2003;171(2):909–14.CrossRefPubMedGoogle Scholar
  25. 25.
    Kovach MA, Standiford TJ. The function of neutrophils in sepsis. Curr Opin Infect Dis. 2012;25(3):321–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Fialkow L, Fochesatto Filho L, Bozzetti MC, Milani AR, Rodrigues Filho EM, Ladniuk RM, et al. Neutrophil apoptosis: a marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome. Crit Care. 2006;10(6):R155.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tamayo E, Gomez E, Bustamante J, Gómez-Herreras JI, Fonteriz R, Bobillo F, et al. Evolution of neutrophil apoptosis in septic shock survivors and nonsurvivors. J Crit Care. 2012;27(4):415.e1–11.CrossRefGoogle Scholar
  28. 28.
    Drifte G, Dunn-Siegrist I, Tissieres P, Pugin J. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit Care Med. 2013;41(3):820–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Kasten KR, Muenzer JT, Caldwell CC. Neutrophils are significant producers of IL-10 during sepsis. Biochem Biophys Res Commun. 2010;393(1):28–31.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stephan F, Yang K, Tankovic J, Soussy CJ, Dhonneur G, Duvaldestin P, et al. Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients. Crit Care Med. 2002;30(2):315–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Hotchkiss RS, Tinsley KW, Swanson PE, Grayson MH, Osborne DF, Wagner TH, et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol. 2002;168(5):2493–500.CrossRefPubMedGoogle Scholar
  32. 32.
    Fujita S, Seino K, Sato K, Sato Y, Eizumi K, Yamashita N, et al. Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood. 2006;107(9):3656–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Poehlmann H, Schefold JC, Zuckermann-Becker H, Volk HD, Meisel C. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit Care. 2009;13(4):R119.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pastille E, Didovic S, Brauckmann D, Rani M, Agrawal H, Schade FU, et al. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J Immunol. 2011;186(2):977–86.CrossRefPubMedGoogle Scholar
  35. 35.
    Guisset O, Dilhuydy MS, Thiebaut R, Lefèvre J, Camou F, Sarrat A, et al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med. 2007;33(1):148–52.CrossRefPubMedGoogle Scholar
  36. 36.
    Toliver-Kinsky TE, Cui W, Murphey ED, Lin C, Sherwood ER. Enhancement of dendritic cell production by fms-like tyrosine kinase-3 ligand increases the resistance of mice to a burn wound infection. J Immunol. 2005;174(1):404–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Bohannon J, Fang G, Cui W, Sherwood E, Toliver-Kinsky T. Fms-like tyrosine kinase-3 ligand alters antigen-specific responses to infections after severe burn injury. Shock. 2009;32(4):435–41.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cavaillon JM, Adib-Conquy M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care. 2006;10(5):233.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest. 1991;88(5):1747–54.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Monneret G, Finck ME, Venet F, Debard AL, Bohé J, Bienvenu J, et al. The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol Lett. 2004;95(2):193–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Venet F, Davin F, Guignant C, Larue A, Cazalis MA, Darbon R, et al. Early assessment of leukocyte alterations at diagnosis of septic shock. Shock. 2010;34(4):358–63.CrossRefPubMedGoogle Scholar
  43. 43.
    Chiche L, Forel JM, Thomas G, Farnarier C, Vely F, Bléry M, et al. The role of natural killer cells in sepsis. J Biomed Biotechnol. 2011;2011:986491.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Forel JM, Chiche L, Thomas G, Mancini J, Farnarier C, Cognet C, et al. Phenotype and functions of natural killer cells in critically-ill septic patients. PLoS One. 2012;7(12):e50446.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Giamarellos-Bourboulis EJ, Tsaganos T, Spyridaki E, Mouktaroudi M, Plachouras D, Vaki I, et al. Early changes of CD4-positive lymphocytes and NK cells in patients with severe Gram-negative sepsis. Crit Care. 2006;10(6):R166.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Souza-Fonseca-Guimaraes F, Parlato M, Fitting C, Cavaillon JM, Adib-Conquy M. NK cell tolerance to TLR agonists mediated by regulatory T cells after polymicrobial sepsis. J Immunol. 2012;188(12):5850–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Souza-Fonseca-Guimaraes F, Parlato M, Philippart F, Misset B, Cavaillon JM, Adib-Conquy M, et al. Toll-like receptors expression and interferon-gamma production by NK cells in human sepsis. Crit Care. 2012;16(5):R206.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chiche L, Forel JM, Thomas G, Farnarier C, Cognet C, Guervilly C, et al. Interferon-gamma production by natural killer cells and cytomegalovirus in critically ill patients. Crit Care Med. 2012;40(12):3162–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Monneret G, Venet F, Kullberg BJ, Netea MG. ICU-acquired immunosuppression and the risk for secondary fungal infections. Med Mycol. 2011;49(Suppl 1):S17–23.CrossRefPubMedGoogle Scholar
  50. 50.
    Venet F, Bohe J, Debard AL, Bienvenu J, Lepape A, Monneret G. Both percentage of gammadelta T lymphocytes and CD3 expression are reduced during septic shock. Crit Care Med. 2005;33(12):2836–40.CrossRefPubMedGoogle Scholar
  51. 51.
    Andreu-Ballester JC, Tormo-Calandin C, Garcia-Ballesteros C, Pérez-Griera J, Amigó V, Almela-Quilis A, et al. Association of gammadelta T cells with disease severity and mortality in septic patients. Clin Vaccine Immunol. 2013;20(5):738–46.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Monneret G, Debard AL, Venet F, Bohe J, Hequet O, Bienvenu J, et al. Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003;31(7):2068–71.CrossRefPubMedGoogle Scholar
  53. 53.
    Venet F, Chung CS, Kherouf H, Geeraert A, Malcus C, Poitevin F, et al. Increased circulating regulatory T cells (CD4(+)CD25(+)CD127(−)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med. 2009;35(4):678–86.CrossRefPubMedGoogle Scholar
  54. 54.
    Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A. 2007;104(49):19446–51.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Li L, Wu CY. CD4+ CD25+ Treg cells inhibit human memory gammadelta T cells to produce IFN-gamma in response to M tuberculosis antigen ESAT-6. Blood. 2008;111(12):5629–36.CrossRefPubMedGoogle Scholar
  56. 56.
    Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro-versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis. 2000;181(1):176–80.CrossRefPubMedGoogle Scholar
  57. 57.
    Asadullah K, Woiciechowsky C, Docke WD, Egerer K, Kox WJ, Vogel S, et al. Very low monocytic HLA-DR expression indicates high risk of infection—immunomonitoring for patients after neurosurgery and patients during high dose steroid therapy. Eur J Emerg Med. 1995;2(4):184–90.CrossRefPubMedGoogle Scholar
  58. 58.
    van den Berk JM, Oldenburger RH, van den Berg AP, Klompmaker IJ, Mesander G, van Son WJ, et al. Low HLA-DR expression on monocytes as a prognostic marker for bacterial sepsis after liver transplantation. Transplantation. 1997;63(12):1846–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Denzel C, Riese J, Hohenberger W, Born G, Köckerling F, Tschaikowsky K, et al. Monitoring of immunotherapy by measuring monocyte HLA-DR expression and stimulated TNFalpha production during sepsis after liver transplantation. Intensive Care Med. 1998;24(12):1343–4.CrossRefPubMedGoogle Scholar
  60. 60.
    Haveman JW, van den Berg AP, van den Berk JM, Mesander G, Slooff MJ, de Leij LH, et al. Low HLA-DR expression on peripheral blood monocytes predicts bacterial sepsis after liver transplantation: relation with prednisolone intake. Transpl Infect Dis. 1999;1(3):146–52.CrossRefPubMedGoogle Scholar
  61. 61.
    Hynninen M, Pettila V, Takkunen O, Orko R, Jansson SE, Kuusela P, et al. Predictive value of monocyte histocompatibility leukocyte antigen-DR expression and plasma interleukin-4 and -10 levels in critically ill patients with sepsis. Shock. 2003;20(1):1–4.CrossRefPubMedGoogle Scholar
  62. 62.
    Oczenski W, Krenn H, Jilch R, Watzka H, Waldenberger F, Köller U, et al. HLA-DR as a marker for increased risk for systemic inflammation and septic complications after cardiac surgery. Intensive Care Med. 2003;29(8):1253–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Perry SE, Mostafa SM, Wenstone R, Shenkin A, McLaughlin PJ. Is low monocyte HLA-DR expression helpful to predict outcome in severe sepsis? Intensive Care Med. 2003;29(8):1245–52.CrossRefPubMedGoogle Scholar
  64. 64.
    Ahlstrom A, Hynninen M, Tallgren M, Kuusela P, Valtonen M, Orko R, et al. Predictive value of interleukins 6, 8 and 10, and low HLA-DR expression in acute renal failure. Clin Nephrol. 2004;61(2):103–10.CrossRefPubMedGoogle Scholar
  65. 65.
    Su L, Zhou DY, Tang YQ, Wen Q, Bai T, Meng FS, et al. Clinical value of monitoring CD14+ monocyte human leukocyte antigen (locus) DR levels in the early stage of sepsis. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2006;18(11):677–9.PubMedGoogle Scholar
  66. 66.
    Zhang YT, Fang Q. Study on monocyte HLA-DR expression in critically ill patients after surgery. Zhonghua Wai Ke Za Zhi. 2006;44(21):1480–2.PubMedGoogle Scholar
  67. 67.
    Allen ML, Peters MJ, Goldman A, Elliott M, James I, Callard R, et al. Early postoperative monocyte deactivation predicts systemic inflammation and prolonged stay in pediatric cardiac intensive care. Crit Care Med. 2002;30(5):1140–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Doughty L, Carcillo JA, Kaplan S, Janosky J. The compensatory anti-inflammatory cytokine interleukin 10 response in pediatric sepsis-induced multiple organ failure. Chest. 1998;113(6):1625–31.CrossRefPubMedGoogle Scholar
  69. 69.
    Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65(4):1357–65.CrossRefPubMedGoogle Scholar
  70. 70.
    van Dissel JT, van Langevelde P, Westendorp RG, Kwappenberg K, Frolich M. Anti-inflammatory cytokine profile and mortality in febrile patients. Lancet. 1998;351(9107):950–3.CrossRefPubMedGoogle Scholar
  71. 71.
    Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594–605.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Angele MK, Wichmann MW, Ayala A, Cioffi WG, Chaudry IH. Testosterone receptor blockade after hemorrhage in males. Restoration of the depressed immune functions and improved survival following subsequent sepsis. Arch Surg. 1997;132(11):1207–14.CrossRefPubMedGoogle Scholar
  73. 73.
    Angele MK, Catania RA, Ayala A, Cioffi WG, Bland KI, Chaudry IH. Dehydroepiandrosterone: an inexpensive steroid hormone that decreases the mortality due to sepsis following trauma-induced hemorrhage. Arch Surg. 1998;133(12):1281–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Catania RA, Angele MK, Ayala A, Cioffi WG, Bland KI, Chaudry IH. Dehydroepiandrosterone restores immune function following trauma-haemorrhage by a direct effect on T lymphocytes. Cytokine. 1999;11(6):443–50.CrossRefPubMedGoogle Scholar
  75. 75.
    Roifman CM, Zhang J, Chitayat D, Sharfe N. A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency. Blood. 2000;96(8):2803–7.PubMedGoogle Scholar
  76. 76.
    Puel A, Leonard WJ. Mutations in the gene for the IL-7 receptor result in T(−)B(+)NK(+) severe combined immunodeficiency disease. Curr Opin Immunol. 2000;12(4):468–73.CrossRefPubMedGoogle Scholar
  77. 77.
    Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(−)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;20(4):394–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Hutchins NA, Unsinger J, Hotchkiss RS, Ayala A. The new normal: immunomodulatory agents against sepsis immune suppression. Trends Mol Med. 2014;20(4):224–33.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Unsinger J, McGlynn M, Kasten KR, Hoekzema AS, Watanabe E, Muenzer JT, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010;184(7):3768–79.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Lelièvre JD, et al. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest. 2009;119(4):997–1007.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Ochoa MC, Mazzolini G, Hervas-Stubbs S, de Sanmamed MF, Berraondo P, Melero I. Interleukin-15 in gene therapy of cancer. Curr Gene Ther. 2013;13(1):15–30.CrossRefPubMedGoogle Scholar
  82. 82.
    Inoue S, Unsinger J, Davis CG, Muenzer JT, Ferguson TA, Chang K, et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J Immunol. 2010;184(3):1401–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, DF MD, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Zhang Y, Li J, Lou J, Zhou Y, Bo L, Zhu J, et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care. 2011;15(1):R70.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Guignant C, Lepape A, Huang X, Kherouf H, Denis L, Poitevin F, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15(2):R99.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chang KC, Burnham CA, Compton SM, Rasche DP, Mazuski RJ, JS MD, et al. Blockade ofthe negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17(3):R85.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Zhang Y, Zhou Y, Lou J, Li J, Bo L, Zhu K, et al. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care. 2010;14(6):R220.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Root RK, Lodato RF, Patrick W, Cade JF, Fotheringham N, Milwee S, et al. Multicenter, double-blind, placebo-controlled study of the use of filgrastim in patients hospitalized with pneumonia and severe sepsis. Crit Care Med. 2003;31(2):367–73.CrossRefPubMedGoogle Scholar
  90. 90.
    Nelson S, Belknap SM, Carlson RW, Dale D, De Boisblanc B, Farkas S, et al. A randomized controlled trial of filgrastim as an adjunct to antibiotics for treatment of hospitalized patients with community-acquired pneumonia. CAP Study Group. J Infect Dis. 1998;178(4):1075–80.CrossRefPubMedGoogle Scholar
  91. 91.
    Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180(7):640–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Hall MW, Knatz NL, Vetterly C, Tomarello S, Wewers MD, Volk HD, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32.CrossRefPubMedGoogle Scholar
  93. 93.
    Docke WD, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke P, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3(6):678–81.CrossRefPubMedGoogle Scholar
  94. 94.
    Nalos M, Santner-Nanan B, Parnell G, Tang B, McLean AS, Nanan R. Immune effects of interferon gamma in persistent staphylococcal sepsis. Am J Respir Crit Care Med. 2012;185(1):110–2.CrossRefPubMedGoogle Scholar
  95. 95.
    Hershman MJ, Appel SH, Wellhausen SR, Sonnenfeld G, Polk Jr HC. Interferon-gamma treatment increases HLA-DR expression on monocytes in severely injured patients. Clin Exp Immunol. 1989;77(1):67–70.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Bundschuh DS, Barsig J, Hartung T, Randow F, Döcke WD, Volk HD, et al. Granulocyte-macrophage colony-stimulating factor and IFN-gamma restore the systemic TNF-alpha response to endotoxin in lipopolysaccharide-desensitized mice. J Immunol. 1997;158(6):2862–71.PubMedGoogle Scholar
  97. 97.
    Kox WJ, Bone RC, Krausch D, Döcke WD, Kox SN, Wauer H, et al. Interferon gamma-1b in the treatment of compensatory anti-inflammatory response syndrome. A new approach: proof of principle. Arch Intern Med. 1997;157(4):389–93.CrossRefPubMedGoogle Scholar
  98. 98.
    Nakos G, Malamou-Mitsi VD, Lachana A, Karassavoglou A, Kitsiouli E, Agnandi N, et al. Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-gamma. Crit Care Med. 2002;30(7):1488–94.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Alpert Medical School of Brown UniversityRhode Island HospitalProvidenceUSA
  2. 2.Division of Pulmonary, Critical Care, and Sleep MedicineAlpert/Brown Medical SchoolProvidenceUSA

Personalised recommendations