Skip to main content

Analysis of the Sensing Capability of Plasmonic and Magnetoplasmonic Interferometers

  • Chapter
  • First Online:
  • 515 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, the use of our interferometers as biological sensors is proposed and analyzed. A theoretical comparison of the sensitivity of both plasmonic and magnetoplasmonic interferometers and SPR sensors is shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this chapter we are going to refer to the magnetical modulation of the SPP wavevector as \(\Delta ^m{k}_{x}\), since we want to clearly distinguish the variations induced by the change in the refractive index (denoted with superindex n) from those induced by the magnetic field (denoted with superindex m).

  2. 2.

    It has to be noticed that in our theoretical analysis, the propagation distance of the SPP in the plasmonic system (\(L_{sp}\)) is not the same than that of the MP system (denoted therefore as \(L^{mp}_{sp}\)), due to the presence of the Co layer. The same is going to happen then for the distance between the slit and the groove (d or \(d^{mp}\) respectively).

References

  1. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Nat. Mater. 7, 442 (2008)

    Article  ADS  Google Scholar 

  2. M. Svedendahl, S. Chen, A. Dmitriev, M. Kall, Nano Lett. 9, 4428–4433 (2009)

    Article  ADS  Google Scholar 

  3. M.A. Otte, B. Sepulveda, W. Ni, J.P. Juste, L.M. Liz-Marzn, L.M. Lechuga, ACS Nano 4, 349–357 (2010)

    Article  Google Scholar 

  4. J. Homola, S.S. Yee, G. Gauglitz, Sens. Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  5. R.B.M. Schasfoort, A.J. Tudos, Handbook of Surface Plasmon Resonance (The Royal Society of Chemistry, Cambridge, UK, 2008)

    Google Scholar 

  6. J. Homola, Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  Google Scholar 

  7. J. Homola, Chem. Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  8. X. Hoa, A. Kirk, M. Tabrizian, Biosens. Bioelectron. 23, 151–160 (2007)

    Article  Google Scholar 

  9. B. Sepulveda, A. Calle, L.M. Lechuga, G. Armelles, Opt. Lett. 31, 1085–1087 (2006)

    Article  ADS  Google Scholar 

  10. T. Srivastava, R. Das, R. Jha, Sens. Actuators B 157, 246–252 (2011)

    Article  Google Scholar 

  11. R. Ince, R. Narayanaswamy, Anal. Chim. Acta 569, 1–20 (2006)

    Article  Google Scholar 

  12. A. Kussrow, C.S. Enders, D. Bornhop, J. Anal. Chem. 84, 779–792 (2012)

    Article  Google Scholar 

  13. F. Prieto, B. Seplveda, A. Calle, A. Llobera, C. Domnguez, A. Abad, A. Montoya, L.M. Lechuga, Nanotechnology 14, 907 (2003)

    Article  ADS  Google Scholar 

  14. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, M. Lmmerhofer, Biosens. Bioelectron. 26, 3832–3837 (2011)

    Article  Google Scholar 

  15. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, H.J. Lezec, Nature 2, 262–267 (2006)

    Google Scholar 

  16. D. Pacifici, H.J. Lezec, H.A. Atwater, Nat. Photonics 1, 402–406 (2007)

    Article  ADS  Google Scholar 

  17. V.V. Temnov, U. Woggon, J. Dintinger, E. Devaux, T.W. Ebbesen, Opt. Lett. 32, 1235–1237 (2007)

    Article  ADS  Google Scholar 

  18. X. Wu, J. Zhang, J. Chen, C. Zhao, Q. Gong, Opt. Lett. 34, 392–394 (2009)

    Article  ADS  Google Scholar 

  19. Y. Gao, Q. Gan, Z. Xin, X. Cheng, F.J. Bartoli, ACS Nano 5, 9836–9844 (2011)

    Article  Google Scholar 

  20. X. Li, Q. Tan, B. Bai, G. Jin, Opt. Express 19, 20691–20703 (2011)

    Article  ADS  Google Scholar 

  21. J. Feng, V.S. Siu, A. Roelke, V. Mehta, S.Y. Rhieu, G. Palmore, R. Tayhas, D. Pacifici, Nano Lett. 12, 602–609 (2012)

    Article  ADS  Google Scholar 

  22. O. Yavas, C. Kocabas, Opt. Lett. 37, 3396–3398 (2012)

    Article  ADS  Google Scholar 

  23. T. Bian, B.-Z. Dong, Y. Zhang, Plasmonics 8, 741–744 (2013)

    Article  Google Scholar 

  24. Y. Gao, Z. Xin, Q. Gan, X. Cheng, F.J. Bartoli, Opt. Express 21, 5859–5871 (2013)

    Article  ADS  Google Scholar 

  25. Y.-B. Shin, H.M. Kim, Y. Jung, B.H. Chung, Sens. Actuators B 150, 1–6 (2010)

    Article  Google Scholar 

  26. P.P. Markowicz, W.C. Law, A. Baev, P.N. Prasad, S. Patskovsky, A. Kabashin, Opt. Express 15, 1745–1754 (2007)

    Article  ADS  Google Scholar 

  27. D. Regatos, B. Sepúlveda, D. Fariña, L.G. Carrascosa, L.M. Lechuga, Opt. Express 19, 8336–8346 (2011)

    Article  ADS  Google Scholar 

  28. V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.M. Garcia-Martin, T. Thomay, A. Leitenstorfer, R. Bratschitsch, Nat. Photonics 4, 107–111 (2010)

    Article  ADS  Google Scholar 

  29. D. Martin-Becerra, J.B. Gonzalez-Diaz, V. Temnov, A. Cebollada, G. Armelles, T. Thomay, A. Leitenstorfer, R. Bratschitsch, A. Garcia-Martin, M.U. Gonzalez, Appl. Phys. Lett. 97, 183114 (2010)

    Article  ADS  Google Scholar 

  30. D. Martin-Becerra, V.V. Temnov, T. Thomay, A. Leitenstorfer, R. Bratschitsch, G. Armelles, A. Garcia-Martin, M.U. Gonzalez, Phys. Rev. B 86, 035118 (2012)

    Article  ADS  Google Scholar 

  31. M.J. Dicken, L.A. Sweatlock, D. Pacifici, H.J. Lezec, K. Bhattacharya, H.A. Atwater, Nano Lett. 8, 4048–4052 (2008)

    Article  ADS  Google Scholar 

  32. Gonzalez-Diaz, J. B. MagnetoPlasmonics. MagnetoOptics in Plasmonics Systems. Ph.D. thesis, (Universidad Autonoma de Madrid, 2010)

    Google Scholar 

  33. K. Postava, J. Pistora, S. Visnovsky, Czechoslov. J. Phys. 49, 1185–1204 (1999)

    Article  ADS  Google Scholar 

  34. Regatos Gómez, D. Biosensores Opticos de alta sensibilidad basados en tecnicas de modulacion plasmonica. Ph.D. thesis (Universidad de Santiago de Compostela, 2012)

    Google Scholar 

  35. V.V. Temnov, K. Nelson, G. Armelles, A. Cebollada, T. Thomay, A. Leitenstorfer, R. Bratschitsch, Opt. Express 17, 8423–8432 (2009)

    Article  ADS  Google Scholar 

  36. M.G. Manera, G. Montagna, E. Ferreiro-Vila, L. Gonzalez-Garcia, J.R. Sanchez-Valencia, A.R. Gonzalez-Elipe, A. Cebollada, J.M. Garcia-Martin, A. Garcia-Martin, G. Armelles, R. Rella, J. Mater. Chem. 21, 16049–16056 (2011)

    Article  Google Scholar 

  37. J. Piehler, A. Brecht, K. Hehl, G. Gauglitz, Colloids Surf. B. 13, 325 (1999)

    Article  Google Scholar 

  38. M. Piliarik, J. Homola, Opt. Express 17, 16505–16517 (2009)

    Article  ADS  Google Scholar 

  39. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  40. H. Raether, Surface Plasmons (Springer, Berlin, 1986)

    Google Scholar 

  41. J. Renger, S. Grafström, L.M. Eng, Phys. Rev. B 76, 045431 (2007)

    Article  ADS  Google Scholar 

  42. P. Lalanne, J.P. Hugonin, H.T. Liu, B. Wang, Surf. Sci. Rep. 64, 453–469 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Martín Becerra .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martín Becerra, D. (2017). Analysis of the Sensing Capability of Plasmonic and Magnetoplasmonic Interferometers. In: Active Plasmonic Devices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-48411-2_5

Download citation

Publish with us

Policies and ethics