Adipose Tissue Hypoxia in Obesity and Its Impact on Preadipocytes and Macrophages: Hypoxia Hypothesis

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 960)


Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thus, compared with lean subjects, obese subjects have 44% lower capillary density and 58% lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 (HIF-1) activity also requires phosphatidylinositol 3-kinase (PI3K)- and target of rapamycin (TOR)-mediated signaling. HIF-1alpha is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia affects a number of biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation and insulin resistance. Additionally, reactive oxygen radical (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal. Actually mitochondrial ROS (mtROS) production, but not oxygen consumption is required for hypoxic HIF-1alpha protein stabilization. Adipocyte mitochondrial oxidative capacity is reduced in obese compared with non-obese adults. In this respect, mitochondrial dysfunction of adipocyte is associated with the overall adiposity. Furthermore, hypoxia also inhibits macrophage migration from the hypoxic adipose tissue. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible from dysregulated adipocytokines production in obesity. Hypoxia also inhibits adipocyte differentiation from preadipocytes. In addition to stressed adipocytes, hypoxia contributes to immune cell immigration and activation which further aggravates adipose tissue fibrosis. Fibrosis is initiated in response to adipocyte hypertrophy in obesity.


Obesity Hypoxia-inducible transcription factor-1 (HIF-1) alpha Vascular endothelial growth factor (VEGF) Angiogenesis Reactive oxygen species (ROS) Mitochondrial ROS (mtROS) CAAT/enhancer binding protein (C/EBP) CAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) Adipocyte differentiation Adipose tissue blood flow Phosphatidylinositol 3-kinase (PI3K) Inducible nitric oxide synthase (iNOS) 


  1. Acosta-Iborra, B., A. Elorza, I.M. Olazabal, N.B. Martín-Cofreces, S. Martin-Puig, M. Miró, M.J. Calzada, J. Aragonés, F. Sánchez-Madrid, and M.O. Landázuri. 2009. Macrophage oxygen sensing modulates antigen presentation and phagocytic functions involving IFN-gamma production through the HIF-1 alpha transcription factor. Journal of Immunology (Baltimore, Md. 1950) 182: 3155–3164. doi: 10.4049/jimmunol.0801710.CrossRefGoogle Scholar
  2. Ali, A.T., W.E. Hochfeld, R. Myburgh, and M.S. Pepper. 2013. Adipocyte and adipogenesis. European Journal of Cell Biology 92: 229–236. doi: 10.1016/j.ejcb.2013.06.001.PubMedCrossRefGoogle Scholar
  3. Arany, Z., S.-Y. Foo, Y. Ma, J.L. Ruas, A. Bommi-Reddy, G. Girnun, M. Cooper, D. Laznik, J. Chinsomboon, S.M. Rangwala, K.H. Baek, A. Rosenzweig, and B.M. Spiegelman. 2008. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451: 1008–1012. doi: 10.1038/nature06613.PubMedCrossRefGoogle Scholar
  4. Arner, E., P.O. Westermark, K.L. Spalding, T. Britton, M. Rydén, J. Frisén, S. Bernard, and P. Arner. 2010. Adipocyte turnover: Relevance to human adipose tissue morphology. Diabetes 59: 105–109. doi: 10.2337/db09-0942.PubMedCrossRefGoogle Scholar
  5. Bagi, Z., A. Koller, and G. Kaley. 2004. PPARgamma activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes. American Journal of Physiology: Heart and Circulatory Physiology 286: H742–H748. doi: 10.1152/ajpheart.00718.2003.PubMedGoogle Scholar
  6. Bastard, J.-P., M. Maachi, C. Lagathu, M.J. Kim, M. Caron, H. Vidal, J. Capeau, and B. Feve. 2006. Recent advances in the relationship between obesity, inflammation, and insulin resistance. European Cytokine Network 17: 4–12.PubMedGoogle Scholar
  7. Bell, E.L., T.A. Klimova, J. Eisenbart, C.T. Moraes, M.P. Murphy, G.R.S. Budinger, and N.S. Chandel. 2007. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. The Journal of Cell Biology 177: 1029–1036. doi: 10.1083/jcb.200609074.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blanchet, E., S. Van de Velde, S. Matsumura, E. Hao, J. LeLay, K. Kaestner, and M. Montminy. 2015. Feedback inhibition of CREB signaling promotes beta cell dysfunction in insulin resistance. Cell Reports 10: 1149–1157. doi: 10.1016/j.celrep.2015.01.046.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bolinder, J., D.A. Kerckhoffs, E. Moberg, E. Hagström-Toft, and P. Arner. 2000. Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects. Diabetes 49: 797–802.PubMedCrossRefGoogle Scholar
  10. Brahimi-Horn, M.C., and J. Pouysségur. 2007. Oxygen, a source of life and stress. FEBS Letters 581: 3582–3591. doi: 10.1016/j.febslet.2007.06.018.PubMedCrossRefGoogle Scholar
  11. Brewer, J.W. 2014. Regulatory crosstalk within the mammalian unfolded protein response. Cellular and Molecular Life Sciences: CMLS 71: 1067–1079. doi: 10.1007/s00018-013-1490-2.PubMedCrossRefGoogle Scholar
  12. Brüne, B., and J. Zhou. 2003. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Current Medicinal Chemistry 10: 845–855.PubMedCrossRefGoogle Scholar
  13. Brunelle, J.K., E.L. Bell, N.M. Quesada, K. Vercauteren, V. Tiranti, M. Zeviani, R.C. Scarpulla, and N.S. Chandel. 2005. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism 1: 409–414. doi: 10.1016/j.cmet.2005.05.002.PubMedCrossRefGoogle Scholar
  14. Buechler, C., S. Krautbauer, and K. Eisinger. 2015. Adipose tissue fibrosis. World Journal of Diabetes 6: 548–553. doi: 10.4239/wjd.v6.i4.548.PubMedPubMedCentralGoogle Scholar
  15. Carobbio, S., R.M. Hagen, C.J. Lelliott, M. Slawik, G. Medina-Gomez, C.-Y. Tan, A. Sicard, H.J. Atherton, N. Barbarroja, M. Bjursell, M. Bohlooly-Y, S. Virtue, A. Tuthill, E. Lefai, M. Laville, T. Wu, R.V. Considine, H. Vidal, D. Langin, M. Oresic, F.J. Tinahones, J.M. Fernandez-Real, J.L. Griffin, J.K. Sethi, M. López, and A. Vidal-Puig. 2013. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes 62: 3697–3708. doi: 10.2337/db12-1748.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carrière, A., M.-C. Carmona, Y. Fernandez, M. Rigoulet, R.H. Wenger, L. Pénicaud, and L. Casteilla. 2004. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: A mechanism for hypoxia-dependent effect. The Journal of Biological Chemistry 279: 40462–40469. doi: 10.1074/jbc.M407258200.PubMedCrossRefGoogle Scholar
  17. Ceperuelo-Mallafré, V., X. Duran, G. Pachón, K. Roche, L. Garrido-Sánchez, N. Vilarrasa, F.J. Tinahones, V. Vicente, J. Pujol, J. Vendrell, and S. Fernández-Veledo. 2014. Disruption of GIP/GIPR axis in human adipose tissue is linked to obesity and insulin resistance. The Journal of Clinical Endocrinology and Metabolism 99: E908–E919. doi: 10.1210/jc.2013-3350.PubMedCrossRefGoogle Scholar
  18. Chandel, N.S., E. Maltepe, E. Goldwasser, C.E. Mathieu, M.C. Simon, and P.T. Schumacker. 1998. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America 95: 11715–11720.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chandel, N.S., D.S. McClintock, C.E. Feliciano, T.M. Wood, J.A. Melendez, A.M. Rodriguez, and P.T. Schumacker. 2000. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. The Journal of Biological Chemistry 275: 25130–25138. doi: 10.1074/jbc.M001914200.PubMedCrossRefGoogle Scholar
  20. Chen, B., K.S.L. Lam, Y. Wang, D. Wu, M.C. Lam, J. Shen, L. Wong, R.L.C. Hoo, J. Zhang, and A. Xu. 2006. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochemical and Biophysical Research Communications 341: 549–556. doi: 10.1016/j.bbrc.2006.01.004.PubMedCrossRefGoogle Scholar
  21. Chen, S., F. Okahara, N. Osaki, and A. Shimotoyodome. 2015. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice. American Journal of Physiology: Endocrinology and Metabolism 308: E414–E425. doi: 10.1152/ajpendo.00418.2014.PubMedCrossRefGoogle Scholar
  22. Cheng, C., and C. Daskalakis. 2015. Association of adipokines with insulin resistance, microvascular dysfunction, and endothelial dysfunction in healthy young adults. Mediators of Inflammation 2015: 594039. doi: 10.1155/2015/594039.PubMedPubMedCentralGoogle Scholar
  23. Crandall, D.L., G.J. Hausman, and J.G. Kral. 1997. A review of the microcirculation of adipose tissue: Anatomic, metabolic, and angiogenic perspectives. Microcirculation (New York, NY: 1994) 4: 211–232.CrossRefGoogle Scholar
  24. De Ponti, C., R. Carini, E. Alchera, M.P. Nitti, M. Locati, E. Albano, G. Cairo, and L. Tacchini. 2007. Adenosine A2a receptor-mediated, normoxic induction of HIF-1 through PKC and PI-3K-dependent pathways in macrophages. Journal of Leukocyte Biology 82: 392–402. doi: 10.1189/jlb.0107060.PubMedCrossRefGoogle Scholar
  25. Divoux, A., J. Tordjman, D. Lacasa, N. Veyrie, D. Hugol, A. Aissat, A. Basdevant, M. Guerre-Millo, C. Poitou, J.-D. Zucker, P. Bedossa, and K. Clément. 2010. Fibrosis in human adipose tissue: Composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59: 2817–2825. doi: 10.2337/db10-0585.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Donato, A.J., G.D. Henson, R.G. Morgan, R.A. Enz, A.E. Walker, and L.A. Lesniewski. 2012. TNF-α impairs endothelial function in adipose tissue resistance arteries of mice with diet-induced obesity. American Journal of Physiology: Heart and Circulatory Physiology 303: H672–H679. doi: 10.1152/ajpheart.00271.2012.PubMedPubMedCentralGoogle Scholar
  27. Du, J., R. Xu, Z. Hu, Y. Tian, Y. Zhu, L. Gu, and L. Zhou. 2011. PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS One 6: e25213. doi: 10.1371/journal.pone.0025213.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Elias, I., S. Franckhauser, T. Ferré, L. Vilà, S. Tafuro, S. Muñoz, C. Roca, D. Ramos, A. Pujol, E. Riu, J. Ruberte, and F. Bosch. 2012. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61: 1801–1813. doi: 10.2337/db11-0832.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Escribese, M.M., M. Casas, and A.L. Corbí. 2012. Influence of low oxygen tensions on macrophage polarization. Immunobiology 217: 1233–1240. doi: 10.1016/j.imbio.2012.07.002.PubMedCrossRefGoogle Scholar
  30. Evans, A.M., K.J.W. Mustard, C.N. Wyatt, C. Peers, M. Dipp, P. Kumar, N.P. Kinnear, and D.G. Hardie. 2005. Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? The Journal of Biological Chemistry 280: 41504–41511. doi: 10.1074/jbc.M510040200.PubMedCrossRefGoogle Scholar
  31. Fain, J.N. 2006. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitamins and Hormones 74: 443–477. doi: 10.1016/S0083-6729(06)74018-3.PubMedCrossRefGoogle Scholar
  32. Fajas, L., J.C. Fruchart, and J. Auwerx. 1998. Transcriptional control of adipogenesis. Current Opinion in Cell Biology 10: 165–173.PubMedCrossRefGoogle Scholar
  33. Farmer, S.R. 2005. Regulation of PPARgamma activity during adipogenesis. International Journal of Obesity 29(Suppl 1): S13–S16. doi: 10.1038/sj.ijo.0802907.PubMedCrossRefGoogle Scholar
  34. Farnier, C., S. Krief, M. Blache, F. Diot-Dupuy, G. Mory, P. Ferre, and R. Bazin. 2003. Adipocyte functions are modulated by cell size change: Potential involvement of an integrin/ERK signalling pathway. International Journal of Obesity and Related Metabolic Disorders 27: 1178–1186. doi: 10.1038/sj.ijo.0802399.PubMedCrossRefGoogle Scholar
  35. Fischer, B., T. Schöttl, C. Schempp, T. Fromme, H. Hauner, M. Klingenspor, and T. Skurk. 2015. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. American Journal of Physiology: Endocrinology and Metabolism 309: E380–E387. doi: 10.1152/ajpendo.00524.2014.PubMedGoogle Scholar
  36. Frayn, K.N., and F. Karpe. 2014. Regulation of human subcutaneous adipose tissue blood flow. International Journal of Obesity 38: 1019–1026. doi: 10.1038/ijo.2013.200.PubMedCrossRefGoogle Scholar
  37. Fujisaka, S., I. Usui, M. Ikutani, A. Aminuddin, A. Takikawa, K. Tsuneyama, A. Mahmood, N. Goda, Y. Nagai, K. Takatsu, and K. Tobe. 2013. Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice. Diabetologia 56: 1403–1412. doi: 10.1007/s00125-013-2885-1.PubMedCrossRefGoogle Scholar
  38. Fusaru, A.M., C.G. Pisoschi, A. Bold, C. Taisescu, R. Stănescu, M. Hîncu, S. Crăiţoiu, and I.M. Baniţă. 2012. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients. Romanian Journal of Morphology and Embryology 53: 903–909.PubMedGoogle Scholar
  39. Garcia-Fuentes, E., M. Murri, L. Garrido-Sanchez, S. Garcia-Serrano, J.M. García-Almeida, I. Moreno-Santos, F.J. Tinahones, and M. Macias-Gonzalez. 2010. PPARgamma expression after a high-fat meal is associated with plasma superoxide dismutase activity in morbidly obese persons. Obesity (Silver Spring, Md.) 18: 952–958. doi: 10.1038/oby.2009.314.CrossRefGoogle Scholar
  40. García-Fuentes, E., C. Santiago-Fernández, C. Gutiérrez-Repiso, M.D. Mayas, W. Oliva-Olivera, L. Coín-Aragüez, J. Alcaide, L. Ocaña-Wilhelmi, J. Vendrell, F.J. Tinahones, and L. Garrido-Sánchez. 2015. Hypoxia is associated with a lower expression of genes involved in lipogenesis in visceral adipose tissue. Journal of Translational Medicine 13: 373. doi: 10.1186/s12967-015-0732-5.PubMedPubMedCentralCrossRefGoogle Scholar
  41. García-Serrano, S., I. Moreno-Santos, L. Garrido-Sánchez, C. Gutierrez-Repiso, J.M. García-Almeida, J. García-Arnés, J. Rivas-Marín, J.L. Gallego-Perales, E. García-Escobar, G. Rojo-Martinez, F. Tinahones, F. Soriguer, M. Macias-Gonzalez, and E. García-Fuentes. 2011. Stearoyl-CoA desaturase-1 is associated with insulin resistance in morbidly obese subjects. Molecular Medicine 17: 273–280. doi: 10.2119/molmed.2010.00078.PubMedCrossRefGoogle Scholar
  42. Gealekman, O., N. Guseva, C. Hartigan, S. Apotheker, M. Gorgoglione, K. Gurav, K.-V. Tran, J. Straubhaar, S. Nicoloro, M.P. Czech, M. Thompson, R.A. Perugini, and S. Corvera. 2011. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123: 186–194. doi: 10.1161/CIRCULATIONAHA.110.970145.PubMedPubMedCentralCrossRefGoogle Scholar
  43. González-Muniesa, P., C. de Oliveira, F. Pérez de Heredia, M.P. Thompson, and P. Trayhurn. 2011. Fatty acids and hypoxia stimulate the expression and secretion of the adipokine ANGPTL4 (angiopoietin-like protein 4/ fasting-induced adipose factor) by human adipocytes. Journal of Nutrigenetics and Nutrigenomics 4: 146–153. doi: 10.1159/000327774.PubMedCrossRefGoogle Scholar
  44. Goossens, G.H., and E.E. Blaak. 2015. Adipose tissue dysfunction and impaired metabolic health in human obesity: A matter of oxygen? Frontiers in Endocrinology 6: 55. doi: 10.3389/fendo.2015.00055.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Goossens, G.H., A. Bizzarri, N. Venteclef, Y. Essers, J.P. Cleutjens, E. Konings, J.W.E. Jocken, M. Cajlakovic, V. Ribitsch, K. Clément, and E.E. Blaak. 2011. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124: 67–76. doi: 10.1161/CIRCULATIONAHA.111.027813.PubMedCrossRefGoogle Scholar
  46. Goossens, G.H., C.C.M. Moors, N.J. van der Zijl, N. Venteclef, R. Alili, J.W.E. Jocken, Y. Essers, J.P. Cleutjens, K. Clément, M. Diamant, and E.E. Blaak. 2012. Valsartan improves adipose tissue function in humans with impaired glucose metabolism: A randomized placebo-controlled double-blind trial. PLoS One 7: e39930. doi: 10.1371/journal.pone.0039930.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Greenberg, J.I., D.J. Shields, S.G. Barillas, L.M. Acevedo, E. Murphy, J. Huang, L. Scheppke, C. Stockmann, R.S. Johnson, N. Angle, and D.A. Cheresh. 2008. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456: 809–813. doi: 10.1038/nature07424.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gu, P., and A. Xu. 2013. Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction. Reviews in Endocrine & Metabolic Disorders 14: 49–58. doi: 10.1007/s11154-012-9230-8.CrossRefGoogle Scholar
  49. Halberg, N., T. Khan, M.E. Trujillo, I. Wernstedt-Asterholm, A.D. Attie, S. Sherwani, Z.V. Wang, S. Landskroner-Eiger, S. Dineen, U.J. Magalang, R.A. Brekken, and P.E. Scherer. 2009. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Molecular and Cellular Biology 29: 4467–4483. doi: 10.1128/MCB.00192-09.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Handschin, C., and B.M. Spiegelman. 2006. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocrine Reviews 27: 728–735. doi: 10.1210/er.2006-0037.PubMedCrossRefGoogle Scholar
  51. Hardie, D.G., S.A. Hawley, and J.W. Scott. 2006. AMP-activated protein kinase—Development of the energy sensor concept. The Journal of Physiology 574: 7–15. doi: 10.1113/jphysiol.2006.108944.PubMedPubMedCentralCrossRefGoogle Scholar
  52. He, Q., Z. Gao, J. Yin, J. Zhang, Z. Yun, and J. Ye. 2011. Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors: Adipogenesis, insulin, and hypoxia. American Journal of Physiology: Endocrinology and Metabolism 300: E877–E885. doi: 10.1152/ajpendo.00626.2010.PubMedPubMedCentralGoogle Scholar
  53. Heida, N.-M., M. Leifheit-Nestler, M.R. Schroeter, J.-P. Müller, I.-F. Cheng, S. Henkel, A. Limbourg, F.P. Limbourg, F. Alves, J.P. Quigley, Z.M. Ruggeri, G. Hasenfuss, S. Konstantinides, and K. Schäfer. 2010. Leptin enhances the potency of circulating angiogenic cells via src kinase and integrin (alpha)vbeta5: Implications for angiogenesis in human obesity. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 200–206. doi: 10.1161/ATVBAHA.109.192807.PubMedCrossRefGoogle Scholar
  54. Herold, C., H.O. Rennekampff, and S. Engeli. 2013. Apoptotic pathways in adipose tissue. Apoptosis 18: 911–916. doi: 10.1007/s10495-013-0848-0.PubMedCrossRefGoogle Scholar
  55. Hetz, C. 2012. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews: Molecular Cell Biology 13: 89–102. doi: 10.1038/nrm3270.PubMedGoogle Scholar
  56. Hetz, C., F. Martinon, D. Rodriguez, and L.H. Glimcher. 2011. The unfolded protein response: Integrating stress signals through the stress sensor IRE1α. Physiological Reviews 91: 1219–1243. doi: 10.1152/physrev.00001.2011.PubMedCrossRefGoogle Scholar
  57. Hirai, S., C. Ohyane, Y.-I. Kim, S. Lin, T. Goto, N. Takahashi, C.-S. Kim, J. Kang, R. Yu, and T. Kawada. 2014. Involvement of mast cells in adipose tissue fibrosis. American Journal of Physiology: Endocrinology and Metabolism 306: E247–E255. doi: 10.1152/ajpendo.00056.2013.PubMedGoogle Scholar
  58. Hodson, L. 2014. Adipose tissue oxygenation: Effects on metabolic function. Adipocytes 3: 75–80. doi: 10.4161/adip.27114.CrossRefGoogle Scholar
  59. Hoffman, E.C., H. Reyes, F.F. Chu, F. Sander, L.H. Conley, B.A. Brooks, and O. Hankinson. 1991. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252: 954–958.PubMedCrossRefGoogle Scholar
  60. Hosogai, N., A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa, S. Furukawa, Y. Tochino, R. Komuro, M. Matsuda, and I. Shimomura. 2007. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56: 901–911. doi: 10.2337/db06-0911.PubMedCrossRefGoogle Scholar
  61. Huang, L.E., Z. Arany, D.M. Livingston, and H.F. Bunn. 1996. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. The Journal of Biological Chemistry 271: 32253–32259.PubMedCrossRefGoogle Scholar
  62. Huang, L.E., J. Gu, M. Schau, and H.F. Bunn. 1998. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America 95: 7987–7992.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hubbi, M.E., W. Luo, J.H. Baek, and G.L. Semenza. 2011. MCM proteins are negative regulators of hypoxia-inducible factor 1. Molecular Cell 42: 700–712. doi: 10.1016/j.molcel.2011.03.029.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ibarra, A., E. Schwob, and J. Méndez. 2008. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proceedings of the National Academy of Sciences of the United States of America 105: 8956–8961. doi: 10.1073/pnas.0803978105.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ishiyama, J., R. Taguchi, Y. Akasaka, S. Shibata, M. Ito, M. Nagasawa, and K. Murakami. 2011. Unsaturated FAs prevent palmitate-induced LOX-1 induction via inhibition of ER stress in macrophages. Journal of Lipid Research 52: 299–307. doi: 10.1194/jlr.M007104.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ito, S., S. Iwaki, K. Koike, Y. Yuda, A. Nagasaki, R. Ohkawa, Y. Yatomi, T. Furumoto, H. Tsutsui, B.E. Sobel, and S. Fujii. 2013. Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. Coronary Artery Disease 24: 642–650. doi: 10.1097/MCA.0000000000000033.PubMedGoogle Scholar
  67. Jäger, R., M.J.M. Bertrand, A.M. Gorman, P. Vandenabeele, and A. Samali. 2012. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biology of the Cell 104: 259–270. doi: 10.1111/boc.201100055.PubMedCrossRefGoogle Scholar
  68. Jhala, U.S., G. Canettieri, R.A. Screaton, R.N. Kulkarni, S. Krajewski, J. Reed, J. Walker, X. Lin, M. White, and M. Montminy. 2003. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes & Development 17: 1575–1580. doi: 10.1101/gad.1097103.CrossRefGoogle Scholar
  69. Katschinski, D.M., L. Le, S.G. Schindler, T. Thomas, A.K. Voss, and R.H. Wenger. 2004. Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization. Cellular Physiology and Biochemistry 14: 351–360. doi: 10.1159/000080345.PubMedCrossRefGoogle Scholar
  70. Keijer, J., and E.M. van Schothorst. 2008. Adipose tissue failure and mitochondria as a possible target for improvement by bioactive food components. Current Opinion in Lipidology 19: 4–10. doi: 10.1097/MOL.0b013e3282f39f95.PubMedCrossRefGoogle Scholar
  71. Khan, T., E.S. Muise, P. Iyengar, Z.V. Wang, M. Chandalia, N. Abate, B.B. Zhang, P. Bonaldo, S. Chua, and P.E. Scherer. 2009. Metabolic dysregulation and adipose tissue fibrosis: Role of collagen VI. Molecular and Cellular Biology 29: 1575–1591. doi: 10.1128/MCB.01300-08.PubMedCrossRefGoogle Scholar
  72. Kikuchi, D., K. Tanimoto, and K. Nakayama. 2016. CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1α and PERK. Biochemical and Biophysical Research Communications 469: 243–250. doi: 10.1016/j.bbrc.2015.11.113.PubMedCrossRefGoogle Scholar
  73. Kim, K.H., M.J. Song, J. Chung, H. Park, and J.B. Kim. 2005. Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochemical and Biophysical Research Communications 333: 1178–1184. doi: 10.1016/j.bbrc.2005.06.023.PubMedCrossRefGoogle Scholar
  74. Kim, Y.-J., H.-J. Kim, K.Y. Chung, I. Choi, and S.H. Kim. 2014. Transcriptional activation of PIK3R1 by PPARγ in adipocytes. Molecular Biology Reports 41: 5267–5272. doi: 10.1007/s11033-014-3398-9.PubMedCrossRefGoogle Scholar
  75. Koumenis, C., C. Naczki, M. Koritzinsky, S. Rastani, A. Diehl, N. Sonenberg, A. Koromilas, and B.G. Wouters. 2002. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Molecular and Cellular Biology 22: 7405–7416.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kratchmarova, I., B. Blagoev, M. Haack-Sorensen, M. Kassem, and M. Mann. 2005. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308: 1472–1477. doi: 10.1126/science.1107627.PubMedCrossRefGoogle Scholar
  77. Krishnan, J., C. Danzer, T. Simka, J. Ukropec, K.M. Walter, S. Kumpf, P. Mirtschink, B. Ukropcova, D. Gasperikova, T. Pedrazzini, and W. Krek. 2012. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes & Development 26: 259–270. doi: 10.1101/gad.180406.111.CrossRefGoogle Scholar
  78. Lee, J.H., Z. Gao, and J. Ye. 2013. Regulation of 11β-HSD1 expression during adipose tissue expansion by hypoxia through different activities of NF-κB and HIF-1α. American Journal of Physiology: Endocrinology and Metabolism 304: E1035–E1041. doi: 10.1152/ajpendo.00029.2013.PubMedPubMedCentralGoogle Scholar
  79. Lee, Y.S., J. Kim, O. Osborne, D.Y. Oh, R. Sasik, S. Schenk, A. Chen, H. Chung, A. Murphy, S.M. Watkins, O. Quehenberger, R.S. Johnson, and J.M. Olefsky. 2014. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157: 1339–1352. doi: 10.1016/j.cell.2014.05.012.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lefterova, M.I., and M.A. Lazar. 2009. New developments in adipogenesis. Trends in Endocrinology & Metabolism 20: 107–114. doi: 10.1016/j.tem.2008.11.005.CrossRefGoogle Scholar
  81. Leifheit-Nestler, M., G. Conrad, N.-M. Heida, A. Limbourg, F.P. Limbourg, T. Seidler, M.R. Schroeter, G. Hasenfuss, S. Konstantinides, and K. Schäfer. 2010. Overexpression of integrin beta 5 enhances the paracrine properties of circulating angiogenic cells via Src kinase-mediated activation of STAT3. Arteriosclerosis, Thrombosis, and Vascular Biology 30: 1398–1406. doi: 10.1161/ATVBAHA.110.206086.PubMedCrossRefGoogle Scholar
  82. Lin, J.H., H. Li, D. Yasumura, H.R. Cohen, C. Zhang, B. Panning, K.M. Shokat, M.M. Lavail, and P. Walter. 2007. IRE1 signaling affects cell fate during the unfolded protein response. Science 318: 944–949. doi: 10.1126/science.1146361.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lin, Q., Z. Gao, R.M. Alarcon, J. Ye, and Z. Yun. 2009. A role of miR-27 in the regulation of adipogenesis. The FEBS Journal 276: 2348–2358.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lolmède, K., V. Durand de Saint Front, J. Galitzky, M. Lafontan, and A. Bouloumié. 2003. Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. International Journal of Obesity and Related Metabolic Disorders 27: 1187–1195. doi: 10.1038/sj.ijo.0802407.PubMedCrossRefGoogle Scholar
  85. Luther, J., K. Ubieta, N. Hannemann, M. Jimenez, M. Garcia, C. Zech, G. Schett, E.F. Wagner, and A. Bozec. 2014. Fra-2/AP-1 controls adipocyte differentiation and survival by regulating PPARγ and hypoxia. Cell Death and Differentiation 21: 655–664. doi: 10.1038/cdd.2013.198.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mack, I., R.S. BelAiba, T. Djordjevic, A. Görlach, H. Hauner, and B.L. Bader. 2009. Functional analyses reveal the greater potency of preadipocytes compared with adipocytes as endothelial cell activator under normoxia, hypoxia, and TNFalpha exposure. American Journal of Physiology: Endocrinology and Metabolism 297: E735–E748. doi: 10.1152/ajpendo.90851.2008.PubMedGoogle Scholar
  87. Mansfield, K.D., R.D. Guzy, Y. Pan, R.M. Young, T.P. Cash, P.T. Schumacker, and M.C. Simon. 2005. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metabolism 1: 393–399. doi: 10.1016/j.cmet.2005.05.003.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Marshall, C., A.J. Mamary, A.J. Verhoeven, and B.E. Marshall. 1996. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. American Journal of Respiratory Cell and Molecular Biology 15: 633–644. doi: 10.1165/ajrcmb.15.5.8918370.PubMedCrossRefGoogle Scholar
  89. McQuaid, S.E., L. Hodson, M.J. Neville, A.L. Dennis, J. Cheeseman, S.M. Humphreys, T. Ruge, M. Gilbert, B.A. Fielding, K.N. Frayn, and F. Karpe. 2011. Downregulation of adipose tissue fatty acid trafficking in obesity: A driver for ectopic fat deposition? Diabetes 60: 47–55. doi: 10.2337/db10-0867.PubMedCrossRefGoogle Scholar
  90. Medina-Gomez, G., S. Gray, and A. Vidal-Puig. 2007. Adipogenesis and lipotoxicity: Role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutrition 10: 1132–1137. doi: 10.1017/S1368980007000614.PubMedCrossRefGoogle Scholar
  91. Michailidou, Z., N.M. Morton, J.M. Moreno Navarrete, C.C. West, K.J. Stewart, J.M. Fernández-Real, C.J. Schofield, J.R. Seckl, and P.J. Ratcliffe. 2015. Adipocyte pseudohypoxia suppresses lipolysis and facilitates benign adipose tissue expansion. Diabetes 64: 733–745. doi: 10.2337/db14-0233.PubMedCrossRefGoogle Scholar
  92. Minet, E., G. Michel, D. Mottet, M. Raes, and C. Michiels. 2001. Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radical Biology & Medicine 31: 847–855.CrossRefGoogle Scholar
  93. Monteiro, R., P.M.S.T. de Castro, C. Calhau, and I. Azevedo. 2006. Adipocyte size and liability to cell death. Obesity Surgery 16: 804–806. doi: 10.1381/096089206777346600.PubMedCrossRefGoogle Scholar
  94. Ngo, D.T.M., M.G. Farb, R. Kikuchi, S. Karki, S. Tiwari, S.J. Bigornia, D.O. Bates, M.P. LaValley, N.M. Hamburg, J.A. Vita, D.T. Hess, K. Walsh, and N. Gokce. 2014. Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation 130: 1072–1080. doi: 10.1161/CIRCULATIONAHA.113.008171.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nishimura, S., I. Manabe, M. Nagasaki, Y. Hosoya, H. Yamashita, H. Fujita, M. Ohsugi, K. Tobe, T. Kadowaki, R. Nagai, and S. Sugiura. 2007. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 56: 1517–1526. doi: 10.2337/db06-1749.PubMedCrossRefGoogle Scholar
  96. Niu, G., K.L. Wright, M. Huang, L. Song, E. Haura, J. Turkson, S. Zhang, T. Wang, D. Sinibaldi, D. Coppola, R. Heller, L.M. Ellis, J. Karras, J. Bromberg, D. Pardoll, R. Jove, and H. Yu. 2002. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21: 2000–2008. doi: 10.1038/sj.onc.1205260.PubMedCrossRefGoogle Scholar
  97. Oberkofler, H., N. Fukushima, H. Esterbauer, F. Krempler, and W. Patsch. 2002. Sterol regulatory element binding proteins: Relationship of adipose tissue gene expression with obesity in humans. Biochimica et Biophysica Acta 1575: 75–81.PubMedCrossRefGoogle Scholar
  98. Ozcan, U., Q. Cao, E. Yilmaz, A.-H. Lee, N.N. Iwakoshi, E. Ozdelen, G. Tuncman, C. Görgün, L.H. Glimcher, and G.S. Hotamisligil. 2004. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457–461. doi: 10.1126/science.1103160.PubMedCrossRefGoogle Scholar
  99. Pang, C., Z. Gao, J. Yin, J. Zhang, W. Jia, and J. Ye. 2008. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. American Journal of Physiology: Endocrinology and Metabolism 295: E313–E322. doi: 10.1152/ajpendo.90296.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pasarica, M., B. Gowronska-Kozak, D. Burk, I. Remedios, D. Hymel, J. Gimble, E. Ravussin, G.A. Bray, and S.R. Smith. 2009a. Adipose tissue collagen VI in obesity. The Journal of Clinical Endocrinology and Metabolism 94: 5155–5162. doi: 10.1210/jc.2009-0947.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Pasarica, M., O.R. Sereda, L.M. Redman, D.C. Albarado, D.T. Hymel, L.E. Roan, J.C. Rood, D.H. Burk, and S.R. Smith. 2009b. Reduced adipose tissue oxygenation in human obesity: Evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58: 718–725. doi: 10.2337/db08-1098.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pérez de Heredia, F., I.S. Wood, and P. Trayhurn. 2010. Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflügers Archiv 459: 509–518. doi: 10.1007/s00424-009-0750-3.PubMedCrossRefGoogle Scholar
  103. Pessin, J.E., and H. Kwon. 2012. How does high-fat diet induce adipose tissue fibrosis? Journal of Investigative Medicine 60: 1147–1150. doi: 10.2310/JIM.0b013e318271fdb9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pino, E., H. Wang, M.E. McDonald, L. Qiang, and S.R. Farmer. 2012. Roles for peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivators 1α and 1β in regulating response of white and brown adipocytes to hypoxia. The Journal of Biological Chemistry 287: 18351–18358. doi: 10.1074/jbc.M112.350918.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Qiao, L., and J. Shao. 2006. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. The Journal of Biological Chemistry 281: 39915–39924. doi: 10.1074/jbc.M607215200.PubMedCrossRefGoogle Scholar
  106. Rausch, M.E., S. Weisberg, P. Vardhana, and D.V. Tortoriello. 2008. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. International Journal of Obesity 32: 451–463. doi: 10.1038/sj.ijo.0803744.PubMedCrossRefGoogle Scholar
  107. Reisz-Porszasz, S., M.R. Probst, B.N. Fukunaga, and O. Hankinson. 1994. Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Molecular and Cellular Biology 14: 6075–6086.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ron, D., and J.F. Habener. 1992. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes & Development 6: 439–453.CrossRefGoogle Scholar
  109. San José, E., A.G. Sahuquillo, R. Bragado, and B. Alarcón. 1998. Assembly of the TCR/CD3 complex: CD3 epsilon/delta and CD3 epsilon/gamma dimers associate indistinctly with both TCR alpha and TCR beta chains. Evidence for a double TCR heterodimer model. European Journal of Immunology 28: 12–21.PubMedCrossRefGoogle Scholar
  110. Shimano, H. 2009. SREBPs: Physiology and pathophysiology of the SREBP family. The FEBS Journal 276: 616–621. doi: 10.1111/j.1742-4658.2008.06806.x.PubMedCrossRefGoogle Scholar
  111. Simon, M.C. 2006. Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization. Adv. Exp. Med. Biol. 588: 165–170.PubMedCrossRefGoogle Scholar
  112. Skurk, T., and H. Hauner. 2004. Obesity and impaired fibrinolysis: Role of adipose production of plasminogen activator inhibitor-1. International Journal of Obesity and Related Metabolic Disorders 28: 1357–1364. doi: 10.1038/sj.ijo.0802778.PubMedCrossRefGoogle Scholar
  113. Skurk, T., C. Herder, I. Kräft, S. Müller-Scholze, H. Hauner, and H. Kolb. 2005. Production and release of macrophage migration inhibitory factor from human adipocytes. Endocrinology 146: 1006–1011. doi: 10.1210/en.2004-0924.PubMedCrossRefGoogle Scholar
  114. Skurk, T., C. Alberti-Huber, C. Herder, and H. Hauner. 2007. Relationship between adipocyte size and adipokine expression and secretion. The Journal of Clinical Endocrinology and Metabolism 92: 1023–1033. doi: 10.1210/jc.2006-1055.PubMedCrossRefGoogle Scholar
  115. Snodgrass, R.G., M. Boß, E. Zezina, A. Weigert, N. Dehne, I. Fleming, B. Brüne, and D. Namgaladze. 2016. Hypoxia potentiates palmitate-induced pro-inflammatory activation of primary human macrophages. The Journal of Biological Chemistry 291: 413–424. doi: 10.1074/jbc.M115.686709.PubMedCrossRefGoogle Scholar
  116. Stockmann, C., Y. Kerdiles, M. Nomaksteinsky, A. Weidemann, N. Takeda, A. Doedens, A.X. Torres-Collado, L. Iruela-Arispe, V. Nizet, and R.S. Johnson. 2010. Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis. Proceedings of the National Academy of Sciences of the United States of America 107: 4329–4334. doi: 10.1073/pnas.0912766107.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Strissel, K.J., Z. Stancheva, H. Miyoshi, J.W. Perfield, J. DeFuria, Z. Jick, A.S. Greenberg, and M.S. Obin. 2007. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56: 2910–2918. doi: 10.2337/db07-0767.PubMedCrossRefGoogle Scholar
  118. Sun, K., C.M. Kusminski, and P.E. Scherer. 2011. Adipose tissue remodeling and obesity. The Journal of Clinical Investigation 121: 2094–2101. doi: 10.1172/JCI45887.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sun, K., J. Park, O.T. Gupta, W.L. Holland, P. Auerbach, N. Zhang, R. Goncalves Marangoni, S.M. Nicoloro, M.P. Czech, J. Varga, T. Ploug, Z. An, and P.E. Scherer. 2014. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications 5: 3485. doi: 10.1038/ncomms4485.PubMedPubMedCentralGoogle Scholar
  120. Sung, H.-K., K.-O. Doh, J.E. Son, J.G. Park, Y. Bae, S. Choi, S.M.L. Nelson, R. Cowling, K. Nagy, I.P. Michael, G.Y. Koh, S.L. Adamson, T. Pawson, and A. Nagy. 2013. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metabolism 17: 61–72. doi: 10.1016/j.cmet.2012.12.010.PubMedCrossRefGoogle Scholar
  121. Takahashi, K., K. Miyokawa-Gorin, K. Handa, A. Kitahara, R. Moriya, H. Onuma, Y. Sumitani, T. Tanaka, H. Katsuta, S. Nishida, K. Yoshimoto, H. Ohno, and H. Ishida. 2013. Endogenous oxidative stress, but not ER stress, induces hypoxia-independent VEGF120 release through PI3K-dependent pathways in 3T3-L1 adipocytes. Obesity (Silver Spring, Md.) 21: 1625–1634. doi: 10.1002/oby.20206.CrossRefGoogle Scholar
  122. Tan, J.T.M., S.V. McLennan, W.W. Song, L.W.-Y. Lo, J.G. Bonner, P.F. Williams, and S.M. Twigg. 2008. Connective tissue growth factor inhibits adipocyte differentiation. American Journal of Physiology: Cell Physiology 295: C740–C751. doi: 10.1152/ajpcell.00333.2007.PubMedCrossRefGoogle Scholar
  123. Trayhurn, P. 2013. Hypoxia and adipose tissue function and dysfunction in obesity. Physiological Reviews 93: 1–21. doi: 10.1152/physrev.00017.2012.PubMedCrossRefGoogle Scholar
  124. ———. 2014. Hypoxia and adipocyte physiology: Implications for adipose tissue dysfunction in obesity. Annual Review of Nutrition 34: 207–236. doi: 10.1146/annurev-nutr-071812-161156.PubMedCrossRefGoogle Scholar
  125. Trayhurn, P., B. Wang, and I.S. Wood. 2008. Hypoxia in adipose tissue: A basis for the dysregulation of tissue function in obesity? The British Journal of Nutrition 100: 227–235. doi: 10.1017/S0007114508971282.PubMedCrossRefGoogle Scholar
  126. Treins, C., S. Giorgetti-Peraldi, J. Murdaca, G.L. Semenza, and E. Van Obberghen. 2002. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. The Journal of Biological Chemistry 277: 27975–27981. doi: 10.1074/jbc.M204152200.PubMedCrossRefGoogle Scholar
  127. Turner, L., C. Scotton, R. Negus, and F. Balkwill. 1999. Hypoxia inhibits macrophage migration. European Journal of Immunology 29: 2280–2287. doi: 10.1002/(SICI)1521-4141(199907)29:07<2280::AID-IMMU2280>3.0.CO;2-C.PubMedCrossRefGoogle Scholar
  128. Turrens, J.F. 1997. Superoxide production by the mitochondrial respiratory chain. Bioscience Reports 17: 3–8.PubMedCrossRefGoogle Scholar
  129. Van de Velde, S., M.F. Hogan, and M. Montminy. 2011. mTOR links incretin signaling to HIF induction in pancreatic beta cells. Proceedings of the National Academy of Sciences of the United States of America 108: 16876–16882. doi: 10.1073/pnas.1114228108.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Walter, P., and D. Ron. 2011. The unfolded protein response: From stress pathway to homeostatic regulation. Science 334: 1081–1086. doi: 10.1126/science.1209038.PubMedCrossRefGoogle Scholar
  131. Wang, B., I.S. Wood, and P. Trayhurn. 2008. Hypoxia induces leptin gene expression and secretion in human preadipocytes: Differential effects of hypoxia on adipokine expression by preadipocytes. The Journal of Endocrinology 198: 127–134. doi: 10.1677/JOE-08-0156.PubMedCrossRefGoogle Scholar
  132. Weisberg, S.P., D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel, and A.W. Ferrante. 2003. Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation 112: 1796–1808. doi: 10.1172/JCI19246.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wood, I.S., F.P. de Heredia, B. Wang, and P. Trayhurn. 2009. Cellular hypoxia and adipose tissue dysfunction in obesity. The Proceedings of the Nutrition Society 68: 370–377. doi: 10.1017/S0029665109990206.PubMedCrossRefGoogle Scholar
  134. Wood, I.S., T. Stezhka, and P. Trayhurn. 2011. Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension. Pflügers Archiv 462: 469–477. doi: 10.1007/s00424-011-0985-7.PubMedCrossRefGoogle Scholar
  135. Xu, X.J., M.-S. Gauthier, D.T. Hess, C.M. Apovian, J.M. Cacicedo, N. Gokce, M. Farb, R.J. Valentine, and N.B. Ruderman. 2012. Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. Journal of Lipid Research 53: 792–801. doi: 10.1194/jlr.P022905.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Xue, Y., F. Bi, X. Zhang, S. Zhang, Y. Pan, N. Liu, Y. Shi, X. Yao, Y. Zheng, and D. Fan. 2006. Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel-Lindau suppression and HIF1alpha activation. International Journal of Cancer 118: 2965–2972. doi: 10.1002/ijc.21763.PubMedCrossRefGoogle Scholar
  137. Yang, J., L. Craddock, S. Hong, and Z.-M. Liu. 2009. AMP-activated protein kinase suppresses LXR-dependent sterol regulatory element-binding protein-1c transcription in rat hepatoma McA-RH7777 cells. Journal of Cellular Biochemistry 106: 414–426. doi: 10.1002/jcb.22024.PubMedCrossRefGoogle Scholar
  138. Ye, J. 2011. Adipose tissue vascularization: Its role in chronic inflammation. Current Diabetes Reports 11: 203–210. doi: 10.1007/s11892-011-0183-1.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ye, J., Z. Gao, J. Yin, and Q. He. 2007. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. American Journal of Physiology: Endocrinology and Metabolism 293: E1118–E1128. doi: 10.1152/ajpendo.00435.2007.PubMedGoogle Scholar
  140. Yin, J., Z. Gao, Q. He, D. Zhou, Z. Guo, and J. Ye. 2009. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. American Journal of Physiology: Endocrinology and Metabolism 296: E333–E342. doi: 10.1152/ajpendo.90760.2008.PubMedGoogle Scholar
  141. Yin, X., I.R. Lanza, J.M. Swain, M.G. Sarr, K.S. Nair, and M.D. Jensen. 2014. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. The Journal of Clinical Endocrinology and Metabolism 99: E209–E216. doi: 10.1210/jc.2013-3042.PubMedCrossRefGoogle Scholar
  142. Yu, J., L. Shi, H. Wang, P.J. Bilan, Z. Yao, M.C. Samaan, Q. He, A. Klip, and W. Niu. 2011. Conditioned medium from hypoxia-treated adipocytes renders muscle cells insulin resistant. European Journal of Cell Biology 90: 1000–1015. doi: 10.1016/j.ejcb.2011.06.004.PubMedCrossRefGoogle Scholar
  143. Yun, Z., H.L. Maecker, R.S. Johnson, and A.J. Giaccia. 2002. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: A mechanism for regulation of adipogenesis by hypoxia. Developmental Cell 2: 331–341.PubMedCrossRefGoogle Scholar
  144. Zagórska, A., and J. Dulak. 2004. HIF-1: The knowns and unknowns of hypoxia sensing. Acta Biochimica Polonica 51: 563–585.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of General SurgeryGazi UniversityBesevlerTurkey
  2. 2.CankayaTurkey

Personalised recommendations