Skip to main content

DARTAGNAN a Self-balanced Rehabilitation Robot Able to Work in Active and Passive Modes on Both Sides of Upper and Lower Limbs

  • Conference paper
  • First Online:
Advances in Italian Mechanism Science

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 47))

Abstract

The article deals with a new six degrees of freedom system for rehabilitation, able to work, in active or passive modes, on upper and lower, left and rights limbs. This robot has an hybrid serial parallel structure, mechanically self-balanced thanks to the particular joints configuration. Performing a simple manual operation it’s possible to change configuration of the robot, depending on the patient side on which the operator would act. The system is controlled by a multiprocessor distributed control system connected via CAN bus protocol. The control unit will also able to detect the force interactions between patient and manipulator, so that the system might behave as a 3D haptic system. Patents have been applied on this device [35].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogin B, Varela-Silva MI (2010) Leg length, body proportion, and health: a review with a note on beauty. Int J Environ Res Public Health 7(3):1047–1075

    Article  Google Scholar 

  2. Colizzi L, Lidonnici A, Pignolo L (2009) The ARAMIS project: a concept robot and technical design. J Rehabil Med 41:1011–1015

    Article  Google Scholar 

  3. Danieli G (2015) Self balanced rehabilitation robot able to work both in active and passive modes on upper and lower limbs, left and rights. Italian patent application CS2015A000001, 18 Jan 2015

    Google Scholar 

  4. Danieli G (2016) Robot riabilitativo auto-bilanciato in gradi di lavorare sia in modo attivo che passive sia su arti superiori che inferiori, sia destri che sinistri. CS2016A000001, 17 Jan 2016

    Google Scholar 

  5. Danieli G (2016) Robot riabilitativo auto-bilanciato in gradi di lavorare sia in modo attivo che passive sia su arti superiori che inferiori, sia destri che sinistri. PCT, 18 Jan 2016

    Google Scholar 

  6. Danieli G, Fragomeni G, Gatti G, Merola A, Moschella D (2005) Navi-Robot, a navigator able to turn itself into a robot to reach the correct position for a given task during orthopaedic surgical procedures. WSEAS Trans Syst 4(7):1037–1045. ISSN: 1109-2777

    Google Scholar 

  7. Denavit L, Hartenberg RS (1955) A kinematic notation for lower-pair mechanism based on matrices. ASME J Appl Mech 77:215–221

    MathSciNet  MATH  Google Scholar 

  8. Dobkin BH (2004) Strategies for stroke rehabilitation. Lancet Neurol 3:526–528

    Article  Google Scholar 

  9. Donnici M, Lupinacci G, Nudo P, Perrelli M, Meduri S, Sinopoli B, Pulice D, Pace C, Danieli G (2012) Using Navi-Robot in conjunction with a CT equipment to guide precision biopsies. In: Proceedings of the RAAD 2012, 17th international workshop on robotics in Alpe-Adria-Danube Region, 10–13 Sept 2012, Napoli, Italy

    Google Scholar 

  10. Donnici M, Meduri S, Perrelli M, Battaglia D, Gatti G, Pace C, Danieli G (2014) Stochastic deterministic calibration of a self balanced hybrid parallel/serial robotic structure. Probl Mech 54(2):29–37

    Google Scholar 

  11. Esquenazi A, Lee S, Packel AT, Braitman L (2013) A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. PM R 5(4):280–290

    Article  Google Scholar 

  12. Hidler J, Nichols D, Pelliccio M, Brady K (2005) Advances in the understanding and treatment of stroke impairment using robotic devices. Top Stroke Rehabil 12:22–33

    Article  Google Scholar 

  13. Krebs HI, Hogan N, Volpe BT, Aisen ML, Edelstein L, Diels C (1999) Overview of clinical trials wit MIT-MANUS, a robot aided neuro-rehabilitation facility. Technol Health Care 7:419–423

    Google Scholar 

  14. Krebs HI, Ferraro M, Buerger SP, Newbery MJ, Makiyama A, Sandmann M, Lynch D, Volpe BT, Hogan N (2004) Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J NeuroEng Rehabil 1:5

    Article  Google Scholar 

  15. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M (2013) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 25:7

    Google Scholar 

  16. Mosole S, Carraro U, Kern H, Loefler S, Fruhmann H, Vogelauer M, Burggraf S, Mayr W, Krenn M, Paternostro-Sluga T, Hamar D, Cvecka J, Sedliak M, Tirpakova V, Sarabon N, Musarò A, Sandri M, Protasi F, Nori A, Pond A, Zampieri S (2004) Long-term high-level exercise promotes muscle reinnervation with age. J Neuropathol Exp Neurol 73(4):284–294

    Article  Google Scholar 

  17. Perrelli M, Nudo P, Donnici M, Gatti G, Colacino FM, Pace C, Danieli G (2010) Navi-Robot, a multipurpose robot for medical applications. Probl Mech 41(4):22–33

    Google Scholar 

  18. Platz T (2003) Evidence-based arm rehabilitation. Nervenarzt 74:841–849

    Article  Google Scholar 

  19. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J (2004) The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil 18:833–862

    Article  Google Scholar 

  20. Volpe BT, Krebs HI, Hogan N (2001) Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr Opin Neurol 14:745–752

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the great and patient work of Basilio Sinopoli and Attilio Caseti, which were fundamental for the construction of this robot. This work has been made possible by a grant of Regione Calabria, under project LOCUBIRehab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Danieli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Perrelli, M., Nudo, P., Iocco, M., Danieli, G. (2017). DARTAGNAN a Self-balanced Rehabilitation Robot Able to Work in Active and Passive Modes on Both Sides of Upper and Lower Limbs. In: Boschetti, G., Gasparetto, A. (eds) Advances in Italian Mechanism Science. Mechanisms and Machine Science, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-48375-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48375-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48374-0

  • Online ISBN: 978-3-319-48375-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics