Skip to main content

CMOS Biosensors

  • Chapter
  • First Online:
Non-logic Devices in Logic Processes
  • 988 Accesses

Abstract

We will start from the general requirements in chemical and biosensors and then narrow down the specific advantages of CMOS implementation in view of signal transduction from the biological to the electronic domains. As the amperometric sensing on CMOS is similar to most popular mixed-signal designs, we will only focus on field-effect sensors with a polarizable electrode or interface. A general device based on the neuromorphic principles in the previous chapters will be presented for its structure, operation, and circuit models. Variations in device implementation will be examined under the unified neuromorphic circuit model. The interface between the electrode and the buffer media will be modeled with an electrical network. We then present sample measurements in different buffer media and examine the current difficulties in realistic operations with long-term reliability. We will conclude at future challenges and outlook for the biological interface to the CMOS world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson, W. (1982). Physical chemistry of surfaces (4th ed.). New York: Wiley.

    Google Scholar 

  • Albert, K. J., Lewis, N. S., Schauer, C. L., Sotzing, G. A., Stitzel, S. E., Vaid, T. P., et al. (2000). Cross-reactive chemical sensor arrays. Chemical Reviews, 100(7), 2595–2626.

    Article  Google Scholar 

  • Allain, J. P. (2000). Clinical & Laboratory Haematology, 22, 1–10.

    Article  Google Scholar 

  • Bard, J., & Faulkner, L. R. (2001). Double-layer structure and adsorption, Chap. 13. In Electrochemical methods: Fundamentals and applications (2nd ed., pp. 534–577). New York: Wiley.

    Google Scholar 

  • Berdondini, L., Chiappalone, M., van der Wal, P. D., Imfeld, K., de Rooij, N. F., Koudelka-Hep, M., et al. (2006). A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sensors and Actuators B: Chemical, 114(1), 530–541.

    Article  Google Scholar 

  • Berdondini, L., van der Wal, P. D., Guenat, O., de Rooij, N. F., Koudelka-Hep, M., Seitz, P., et al. (2005). High-density electrode array for imaging in vitro electrophysiological activity. Biosensors and Bioelectronics, 21, 167–174.

    Article  Google Scholar 

  • Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, 17(1), 70–71.

    Article  Google Scholar 

  • Bousse, L., Shott, J., & Meindl, J. D. (1988). A process for the combined fabrication of ion sensors and CMOS circuits. IEEE Electron Device Letters, 9(1), 44–46.

    Article  Google Scholar 

  • Burns, J. R., & Powlus, R. A. (1996, July 12). Threshold circuit utilizing field effect transistors. U.S. Patent #3,260,863 (filed March 19, 1964).

    Google Scholar 

  • Colapicchioni, C., Barbaro, A., Porcelli, F., & Giannini, I. (1991). Immunoenzymatic assay using CHEMFET devices. Sensors and Actuators B: Chemical, 4, 245–250.

    Article  Google Scholar 

  • Freund, M. S., & Lewis, N. S. (1995). A chemically diverse conducting polymer-based “electronic nose”. Proceedings of the National Academy of Sciences, 92(7), 2652–2656.

    Article  Google Scholar 

  • Gardner, J. W., Varadan, V. K., & Awadelkarim, O. O. (2001). Microsensors, MEMS, and smart devices. New York: Wiley.

    Book  Google Scholar 

  • Gordon P. H., Jayant K., Cao Y., Auluck K., Phelps, J. B., & Kan, E. C. (2015). Critical assessment on modeling and design of non-Faradic CMOS electrochemical sensing. IEEE Sensor Journal, art. 2445292.

    Google Scholar 

  • Huang, I. Y., & Huang, R. S. (2002). Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors. Thin Solid Films, 406(1–2), 255–261.

    Article  Google Scholar 

  • Hunter, R. J. (2001). Foundations of colloid science (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Jacquot, B. C., Muñoz, N. L., Branch, D. W., & Kan, E. C. (2008). Non-faradic electrochemical detection of protein interactions by integrated neuromorphic CMOS sensors. Biosensors and Bioelectronics, 23(10), 1503.

    Article  Google Scholar 

  • Janata, J. (2003). Electrochemical microsensors. Proceedings of the IEEE, 91(6), 864–869.

    Article  Google Scholar 

  • Jayant, K., Auluck, K., Funke, M., Anwar, S., Phelps, J. B., Gordon, P. H., et al. (2013a). Programmable ion sensitive transistor interfaces I: Electrochemical gating. Physical Review E, 88(1), 012801.

    Article  Google Scholar 

  • Jayant, K., Auluck, K., Funke, M., Anwar, S., Phelps, J. B., Gordon, P. H., et al. (2013b). Programmable ion sensitive transistor interfaces II: Biomolecular sensing and manipulation. Physical Review E, 88(1), 012802.

    Article  Google Scholar 

  • Jayant, K., Auluck, K., Rodriguez, S., Cao, Y., & Kan, E. C. (2014). Programmable ion-sensitive transistor interfaces III. Design considerations, signal generation and sensitivity enhancement. Physical Review E, 89(5), 052817.

    Article  Google Scholar 

  • Jayant, K., Rajwade, S., Pollack, L., & Kan, E. C. (2010) Controlled adsorption and desorption of DNA on CMOS—Towards a bi-directional bio-electronic interface. Biosensors, Galsgow, UK.

    Google Scholar 

  • Kilic, M. S., Bazant, M. Z., & Ajdari, A. (2007). Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical Review E, 75, 021502.

    Article  Google Scholar 

  • Kohashi, T., & Kurosawa, T. (1991). Electroosmotic display device. IEEE Transactions on Electron Devices, ED-38(9), 2064–2069.

    Article  Google Scholar 

  • Kovacs, G. T. A., Storment, C. W., Halks-Miller, M., Belczynski, C. R., Jr., Santina, C. C. D., Lewis, E. R., et al. (1994). Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves. IEEE Transactions on Biomedical Engineering, 41(6), 567–577.

    Article  Google Scholar 

  • Kress-Rogers, E. (1997). Handbook of biosensors and electronic nose: Medicine, food, and the environment. Boca Raton: CRC Press.

    Google Scholar 

  • Landheer, D., Aers, G., McKinnon, W. R., Deen, M. J., & Ranuarez, J. C. (2005). Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors. Journal of Applied Physics, 98, 044701.

    Article  Google Scholar 

  • Lang, H. P., Baller, M. K., Battiston, F. M., Fritz, J., Berger, R., Ramseyer, J.-P., et al. (1999). The nanomechanical NOSE. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS ‘99), pp. 9–13.

    Google Scholar 

  • Lee, J., & Kim, C.-J. (2000). Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems, 9(2), 171–180.

    Article  Google Scholar 

  • Liu, Y., Huber, D. E., Tabard-Cossa, V., & Dutton, R. W. (2010). Descreening of field effect in electrically gated nanopores. Applied Physics Letters, 97, 143109.

    Article  Google Scholar 

  • Lonergan, M. C., Severin, E. J., Doleman, B. J., Beaber, S. A., Grubbs, R. H., & Lewis, N. S. (1996). Array-based sensing using chemically sensitive, carbon black-polymer resistors. Chemistry of Materials, 8, 2298–2312.

    Article  Google Scholar 

  • Madou, M. J., & Morrison, S. R. (1989). Chemical sensing with solid state devices. San Diego: Academic.

    Google Scholar 

  • Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seiler, K., & Fluri, K. (1994). Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. Journal of Micromechanics and Microengineering, 4, 257–265.

    Article  Google Scholar 

  • Matsumoto, H., & Colgate, J. E. (1990) Preliminary investigation of micropumping based on electrical control of interfacial tension. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 105–110.

    Google Scholar 

  • Minch, B. A. (1997). The subthreshold floating-gate MOS transistor, Chap. 5. Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, pp. 127–158.

    Google Scholar 

  • Shen, Y. N., Liu, Z., Jacquot, B. C., Minch, B. A., & Kan, E. C. (2004). Integration of chemical sensing and electrowetting actuation on chemoreceptive neuron MOS transistors (CνMOS). Sensors and Actuators B, 102(1), 35–43.

    Article  Google Scholar 

  • Shen, N. Y., Liu, Z., Lee, C., Minch, B. A., & Kan, E. C. (2003). Charge-based chemical sensors: A neuromorphic approach with chemoreceptive neuron MOS (CνMOS) transistors. IEEE Transactions on Electron Devices, ED-50(10), 2171–2178.

    Article  Google Scholar 

  • Shibata, T., & Ohmi, T. (1992). A functional MOS transistor featuring gate-level weighted sum and threshold operations. IEEE Transactions on Electron Devices, ED-39(6), 1444–1455.

    Article  Google Scholar 

  • Siretanu, I., Ebeling, D., Andersson, M. P., Stipp, S. L. S., Philipse, A., & Stuart, M. C. (2014). Direct observation of ionic structure at solid-liquid interfaces: A deep look into the Stern Layer. Scientific Reports, 4, 4956.

    Article  Google Scholar 

  • Smith, R., Huber, R. J., & Janata, J. (1984). Electrostatically protected ion sensitive field effect transistors. Sensors and Actuators, 5(2), 127–136.

    Article  Google Scholar 

  • Steiner, F. -P., Hierlemann, A., Cornila, C., Noetzel, G., Bachtold, M., Korvink, J. G., et al. (1995). Polymer coated capacitive microintegrated gas sensor. In Proceedings of the 8th International Conference on Solid-State Sensors and Actuators (Transducers ‘95), pp. 814–817.

    Google Scholar 

  • Stern, E., Steenblock, E. R., Reed, M. A., & Fahmy, T. M. (2008). Label-free electronic detection of the antigen-specific T-cell immune response. Nano Letters, 8(10), 3310–3314.

    Article  Google Scholar 

  • Storey, B. D., & Bazant, M. Z. (2012). Effects of electrostatic correlations on electrokinetic phenomena. Physical Review E, 86, 056303.

    Article  Google Scholar 

  • Ulman, A. (1996). Formation and structure of self-assembled monolayers. Chemical Reviews, 96(4), 1533–1554.

    Article  Google Scholar 

  • van der Spiegel, J., Lauks, I., Chan, P., & Babic, D. (1983). The extended gate chemically sensitive field effect transistor as multi-species microprobe. Sensors and Actuators, 4, 291–298.

    Article  Google Scholar 

  • van Hal, R. E. G., Eijkel, J. C. T., & Bergveld, P. (1996). General model to describe the electrostatic potential at electrolyte oxide interfaces. Advances in Colloid and Interface Science, 69, 31–62.

    Article  Google Scholar 

  • Wang, L., Zhao, C., Duits, M. H. G., Mugele, F., & Siretanu, I. (2015). Detection of ion adsorption at solid–liquid interfaces using internal reflection ellipsometry. Sensors and Actuators B: Chemical, 210, 649–655.

    Article  Google Scholar 

  • Wenzel, S. W., & White, R. M. (1988). A multisensor employing an ultrasonic lamb-wave oscillator. IEEE Transactions on Electron Devices, ED-35(6), 735–743.

    Article  Google Scholar 

  • Wong, H. S., & White, M. H. (1989). A CMOS-integrated ISFET-operational amplifier chemical sensor employing differential sensing. IEEE Transactions on Electron Devices, 36(3), 479–487.

    Article  Google Scholar 

  • Yager, P., Domingo, G. J., & Gerdes, J. (2008). Annual Review of Biomedical Engineering, 10, 107–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ma, Y., Kan, E. (2017). CMOS Biosensors. In: Non-logic Devices in Logic Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-48339-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48339-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48337-5

  • Online ISBN: 978-3-319-48339-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics