Concurrent Use of Write-Once Memory

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)

Abstract

We consider the problem of implementing general shared-memory objects on top of write-once bits, which can be changed from 0 to 1 but not back again. In a sequential setting, write-once memory (WOM) codes have been developed that allow simulating memory that support multiple writes, even of large values, setting an average of \(1+o(1)\) write-once bits per write. We show that similar space efficiencies can be obtained in a concurrent setting, though at the cost of high time complexity and fixed bound on the number of write operations. As an alternative, we give an implementation that permits unboundedly many writes and has much better amortized time complexity, but at the cost of unbounded space complexity. Whether one can obtain both low time complexity and low space complexity in the same implementation remains open.

Notes

Acknowledgments

Keren Censor-Hillel is supported in part by the Israel Science Foundation (grant 1696/14). The authors thank the anonymous reviewers for helpful comments and suggestions.

References

  1. 1.
    Aghazadeh, Z., Woelfel, P.: On the time and space complexity of ABA prevention and detection. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, (PODC), pp. 193–202 (2015)Google Scholar
  2. 2.
    Alistarh, D., Aspnes, J.: Sub-logarithmic test-and-set against a weak adversary. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 97–109. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24100-0_7 CrossRefGoogle Scholar
  3. 3.
    Aspnes, J., Attiya, H., Censor-Hillel, K.: Polylogarithmic concurrent data structures from monotone circuits. J. ACM 59(1), 2 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aspnes, J., Censor-Hillel, K.: Atomic snapshots in \(O(\log ^{3} n)\) steps using randomized helping. In: Proceedings of the 27th International Symposium on Distributed Computing, (DISC), pp. 254–268 (2013)Google Scholar
  5. 5.
    Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theor. Comput. Syst. 55(3), 451–474 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and renaming. SIAM J. Comput. 31(2), 642–664 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley, Chichester (2004)CrossRefMATHGoogle Scholar
  8. 8.
    Balakrishnan, M., Malkhi, D., Davis, J.D., Prabhakaran, V., Wei, M., Wobber, T.: CORFU: a distributed shared log. ACM Trans. Comput. Syst. 31(4), 10:1–10:24 (2013)CrossRefGoogle Scholar
  9. 9.
    Bhatia, A., Iyengar, A., Siegel, P.H.: Multilevel 2-cell \(t\)-write codes. In: IEEE Information Theory Workshop (ITW) (2012)Google Scholar
  10. 10.
    Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation algorithm. Distrib. Comput. 14(3), 127–146 (2001)CrossRefGoogle Scholar
  11. 11.
    Burshtein, D., Strugatski, A.: Polar write once memory codes. IEEE Trans. Inf. Theory 59(8), 5088–5101 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cassuto, Y., Yaakobi, E.: Short (Q)-ary fixed-rate WOM codes for guaranteed rewrites and with hot/cold write differentiation. IEEE Trans. Inf. Theory 60(7), 3942–3958 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cohen, G.D., Godlewski, P., Merkx, F.: Linear binary code for write-once memories. IEEE Trans. Inf. Theory 32(5), 697–700 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gad, E.E., Wentao, H., Li, Y., Bruck, J.: Rewriting flash memories by message passing. In: IEEE International Symposium on Information Theory (ISIT) (2015)Google Scholar
  15. 15.
    Fiat, A., Shamir, A.: Generalized ‘write-once’ memories. IEEE Trans. Inf. Theory 30(3), 470–479 (1984)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fu, F.-W., Han Vinck, A.J.: On the capacity of generalized write-once memory with state transitions described by an arbitrary directed acyclic graph. IEEE Trans. Inf. Theory 45(1), 308–313 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Giakkoupis, G., Woelfel, P.: On the time and space complexity of randomized test-and-set. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, (PODC), pp. 19–28 (2012)Google Scholar
  18. 18.
    Godlewski, P.: WOM-codes construits à partir des codes de Hamming. Discrete Math. 65(3), 237–243 (1987)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Heegard, C.: On the capacity of permanent memory. IEEE Trans. Inf. Theory 31(1), 34–41 (1985)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Helmi, M., Higham, L., Woelfel, P.: Strongly linearizable implementations: possibilities and impossibilities. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, (PODC), pp. 385–394 (2012)Google Scholar
  21. 21.
    Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San Francisco (2008)Google Scholar
  22. 22.
    Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)CrossRefGoogle Scholar
  23. 23.
    Inoue, M., Masuzawa, T., Chen, W., Tokura, N.: Linear-time snapshot using multi-writer multi-reader registers. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 130–140. Springer, Heidelberg (1994). doi:10.1007/BFb0020429 CrossRefGoogle Scholar
  24. 24.
    Israeli, A., Shaham, A.: Optimal multi-writer multi-reader atomic register. In: Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed Computing, PODC 1992, pp. 71–82, New York, NY, USA. ACM (1992)Google Scholar
  25. 25.
    Israeli, A., Shaham, A.: Time and space optimal implementations of atomic multi-writer register. Inf. Comput. 200(1), 62–106 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Jacobvitz, A.N., Calderbank, R., Sorin, D.J.: Coset coding to extend the lifetime of memory. In: IEEE 19th International Symposium on High Performance Computer Architecture (HPCA) (2013)Google Scholar
  27. 27.
    Kraft, L.G.: A device for quantizing, grouping, and coding amplitude-modulated pulses. M.S. thesis, Department of Electrical Engineering, Massachusetts Institute of Technology (1949)Google Scholar
  28. 28.
    Lamport, L.: On interprocess communication part I: basic formalism. Distrib. Comput. 1(2), 77–85 (1986)CrossRefMATHGoogle Scholar
  29. 29.
    Lamport, L.: On interprocess communication part II: algorithms. Distrib. Comput. 1(2), 86–101 (1986)CrossRefMATHGoogle Scholar
  30. 30.
    Li, J., Mohanram, K.: Write-once-memory-code phase change memory. In: Design, Automation and Test in Europe Conference and Exhibition (DATE) (2014)Google Scholar
  31. 31.
    Margaglia, F., Brinkmann, A.: Improving MLC flash performance and endurance with extended P/E cycles. In: IEEE 31st Symposium on Mass Storage Systems and Technologies (MSST) (2015)Google Scholar
  32. 32.
    Plotkin, S.A.: Sticky bits and universality of consensus. In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, PODC 1989, pp. 159–175, New York, NY, USA. ACM (1989)Google Scholar
  33. 33.
    Rivest, R.R., Shamir, A.: How to reuse a “write-once” memory. Inf. Control 55, 1–19 (1982)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Shpilka, A.: New constructions of WOM codes using the Wozencraft ensemble. IEEE Trans. Inf. Theory 59(7), 4520–4529 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Shpilka, A.: Capacity achieving multiwrite WOM codes. IEEE Trans. Inf. Theory 60(3), 1481–1487 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wolf, J.K., Wyner, A.D., Ziv, J., Korner, J.: Coding for a write-once memory. AT&T Bell Laboratories Tech. J. 63(6), 1089–1112 (1984)CrossRefMATHGoogle Scholar
  37. 37.
    Yunnan, W.: Low complexity codes for writing a write-once memory twice. In: IEEE International Symposium on Information Theory (ISIT) (2010)Google Scholar
  38. 38.
    Wu, Y., Jiang, A.: Position modulation code for rewriting write-once memories. IEEE Trans. Inf. Theory 57(6), 3692–3697 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yaakobi, E., Kayser, S., Siegel, P.H., Vardy, A., Wolf, J.K.: Codes for write-once memories. IEEE Trans. Inf. Theory 58(9), 5985–5999 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yaakobi, E., Shpilka, A.: High sum-rate three-write and non-binary WOM codes. In: IEEE International Symposium on Information Theory (ISIT) (2012)Google Scholar
  41. 41.
    Yadgar, G., Yaakobi, E., Schuster, A.: Write once, get 50% free: saving SSD erase costs using WOM codes. In: 13th USENIX Conference on File and Storage Technologies (FAST) (2015)Google Scholar
  42. 42.
    Zhang, X., Jang, L., Zhang, Y., Zhang, C., Yang, J.: WoM-SET: low power proactive-SET-based PCM write using WoM code. In: IEEE International Symposium on Low Power Electronics and Design (ISLPED) (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • James Aspnes
    • 1
  • Keren Censor-Hillel
    • 2
  • Eitan Yaakobi
    • 2
  1. 1.Department of Computer ScienceYale UniversityNew HavenUSA
  2. 2.Technion, Department of Computer ScienceHaifaIsrael

Personalised recommendations