Setting Ports in an Anonymous Network: How to Reduce the Level of Symmetry?

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)

Abstract

A fundamental question in the setting of anonymous graphs concerns the ability of nodes to spontaneously break symmetries, based on their local perception of the network. In contrast to previous work, which focuses on symmetry breaking under arbitrary port labelings, in this paper, we study the following design question: Given an anonymous graph G without port labels, how to assign labels to the ports of G, in interval form at each vertex, so that symmetry breaking can be achieved using a message-passing protocol requiring as few rounds of synchronous communication as possible?

More formally, for an integer \(l>0\), the truncated view\(\mathcal {V}_l(v)\) of a node v of a port-labeled graph is defined as a tree encoding labels encountered along all walks in the network which originate from node v and have length at most l, and we ask about an assignment of labels to the ports of G so that the views \({\mathcal {V}_{l}}(v)\) are distinct for all nodes \(v\in V\), with the goal being to minimize l.

We present such efficient port labelings for any graph G, and we exhibit examples of graphs showing that the derived bounds are asymptotically optimal in general. More precisely, our results imply the following statements.

  1. 1.

    For any graph G with n nodes and diameter D, a uniformly random port labeling achieves \(l = O(\min (D,\log n))\), w.h.p.

     
  2. 2.

    For any graph G with n nodes and diameter D, it is possible to construct in polynomial time a labeling that satisfies \(l = O(\min (D,\log n))\).

     
  3. 3.

    For any integers \(n\ge 2\) and \(D \le \log _2 n-\log _2\log _2 n\), there exists a graph G with n nodes and diameter D which satisfies \(l \ge \frac{1}{2} D - \frac{5}{2}\).

     

Keywords

Anonymous network Port-labeled network View Level of symmetry 

References

  1. 1.
    Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math. 243(1–3), 21–66 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Boldi, P., Vigna, S.: Universal dynamic synchronous self-stabilization. Distrib. Comput. 15(3), 137–153 (2002)CrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph: applications of universal sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17653-1_10 CrossRefGoogle Scholar
  4. 4.
    Chalopin, J., Métivier, Y.: An efficient message passing election algorithm based on Mazurkiewicz’s algorithm. Fundamenta Informaticae 80(1–3), 221–246 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Czyzowicz, J., Dobrev, S., Gasieniec, L., Ilcinkas, D., Jansson, J., Klasing, R., Lignos, I., Martin, R., Sadakane, K., Sung, W.: More efficient periodic traversal in anonymous undirected graphs. Theor. Comput. Sci. 444, 60–76 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Das, S., Flocchini, P., Nayak, A., Santoro, N.: Effective elections for anonymous mobile agents. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 732–743. Springer, Heidelberg (2006). doi:10.1007/11940128_73 CrossRefGoogle Scholar
  8. 8.
    Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008). doi:10.1007/978-3-540-92221-6_29 CrossRefGoogle Scholar
  9. 9.
    Dereniowski, D., Kosowski, A., Pajak, D.: Distinguishing views in symmetric networks: a tight lower bound. Theor. Comput. Sci. 582, 27–34 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dereniowski, D., Pelc, A.: Drawing maps with advice. J. Parallel Distrib. Comput. 72(2), 132–143 (2012)CrossRefMATHGoogle Scholar
  11. 11.
    Dereniowski, D., Pelc, A.: Leader election for anonymous asynchronous agents in arbitrary networks. Distrib. Comput. 27(1), 21–38 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dereniowski, D., Pelc, A.: Topology recognition and leader election in colored networks. Theor. Comput. Sci. 621, 92–102 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding short right-hand-on-the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 127–139. Springer, Heidelberg (2005). doi:10.1007/11429647_12 CrossRefGoogle Scholar
  14. 14.
    Flocchini, P., Roncato, A., Santoro, N.: Computing on anonymous networks with sense of direction. Theor. Comput. Sci. 1–3(301), 355–379 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fraigniaud, P., Pelc, A.: Decidability classes for mobile agents computing. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29344-3_31 CrossRefGoogle Scholar
  16. 16.
    Fusco, E.G., Pelc, A.: Knowledge, level of symmetry, and time of leader election. Distrib. Comput. 28(4), 221–232 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gasieniec, L., Klasing, R., Martin, R.A., Navarra, A., Zhang, X.: Fast periodic graph exploration with constant memory. J. Comput. Syst. Sci. 74(5), 808–822 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gąsieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 14–29. Springer, Heidelberg (2008). doi:10.1007/978-3-540-92248-3_2 CrossRefGoogle Scholar
  19. 19.
    Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary graphs. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 421–434. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25873-2_29 CrossRefGoogle Scholar
  20. 20.
    Hendrickx, J.M.: Views in a graph: to which depth must equality be checked? IEEE Trans. Parallel Distrib. Syst. 25(7), 1907–1912 (2014)CrossRefGoogle Scholar
  21. 21.
    Ilcinkas, D.: Setting port numbers for fast graph exploration. Theor. Comput. Sci. 401(1–3), 236–242 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic exploration. Algorithmica 63(1–2), 26–38 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Krebs, A., Verbitsky, O.: Universal covers, color refinement, two-variable counting logic: lower bounds for the depth. In: Proceedings of 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015), pp. 689–700. IEEE (2015)Google Scholar
  24. 24.
    Norris, N.: Universal covers of graphs: isomorphism to depth \({N}-1\) implies isomorphism to all depths. Discrete Appl. Math. 56(1), 61–74 (1995)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Steinová, M.: On the power of local orientations. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 156–169. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69355-0_14 CrossRefGoogle Scholar
  26. 26.
    Tani, S.: Compression of view on anonymous networks – folded view. IEEE Trans. Parallel Distrib. Syst. 23(2), 255–262 (2012)CrossRefGoogle Scholar
  27. 27.
    Tani, S., Kobayashi, H., Matsumoto, K.: Exact quantum algorithms for the leader election problem. ACM Trans. Comput. Theor. 4(1), 1 (2012)CrossRefMATHGoogle Scholar
  28. 28.
    Yamashita, M., Kameda, T.: Computing functions on asynchronous anonymous networks. Math. Syst. Theor. 29(4), 331–356 (1996)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: part I-characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)CrossRefGoogle Scholar
  30. 30.
    Yamashita, M., Kameda, T.: Leader election problem on networks in which processor identity numbers are not distinct. IEEE Trans. Parallel Distrib. Syst. 10(9), 878–887 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.LaBRI, CNRS — Université de BordeauxTalenceFrance
  2. 2.Inria and IRIF, CNRS — Université Paris DiderotParisFrance
  3. 3.Faculty of Fundamental Problems of Technology, Institute of InformaticsWroclaw University of TechnologyWroclawPoland

Personalised recommendations