Dynamic Networks of Finite State Machines

  • Yuval Emek
  • Jara UittoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)


Like distributed systems, biological multicellular processes are subject to dynamic changes and a biological system will not pass the survival-of-the-fittest test unless it exhibits certain features that enable fast recovery from these changes. In most cases, the types of dynamic changes a biological process may experience and its desired recovery features differ from those traditionally studied in the distributed computing literature. In particular, a question seldomly asked in the context of distributed digital systems and that is crucial in the context of biological cellular networks, is whether the system can keep the changing components confined so that only nodes in their vicinity may be affected by the changes, but nodes sufficiently far away from any changing component remain unaffected.

Based on this notion of confinement, we propose a new metric for measuring the dynamic changes recovery performance in distributed network algorithms operating under the Stone Age model (Emek and Wattenhofer, PODC 2013), where the class of dynamic topology changes we consider includes inserting/deleting an edge, deleting a node together with its incident edges, and inserting a new isolated node. Our main technical contribution is a distributed algorithm for maximal independent set (MIS) in synchronous networks subject to these topology changes that performs well in terms of the aforementioned new metric. Specifically, our algorithm guarantees that nodes which do not experience a topology change in their immediate vicinity are not affected and that all surviving nodes (including the affected ones) perform \(\mathcal {O}((C + 1) \log ^{2} n)\) computationally-meaningful steps, where C is the number of topology changes; in other words, each surviving node performs \(\mathcal {O}(\log ^{2} n)\) steps when amortized over the number of topology changes. This is accompanied by a simple example demonstrating that the linear dependency on C cannot be avoided.


Cellular Automaton Output State Finite State Machine Topology Change Initial Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 32–50. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24100-0_3 CrossRefGoogle Scholar
  2. 2.
    Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamental distributed computing problem. Science 331(6014), 183–185 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7, 567–583 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications, pp. 97–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Awerbuch, B., Patt-Shamir, B., Peleg, D., Saks, M.: Adapting to asynchronous dynamic networks (extended abstract). In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC), pp. 557–570 (1992)Google Scholar
  7. 7.
    Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks. In: 29th Annual Symposium on Foundations of Computer Science (FOCS), pp. 206–220 (1988)Google Scholar
  8. 8.
    Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Proceedings of the 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 321–330 (2012)Google Scholar
  9. 9.
    Chlamtac, I., Kutten, S.: On broadcasting in radio networks-problem analysis and protocol design. Commun., IEEE Trans. Commun. 33(12), 1240–1246 (1985)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15763-9_15 CrossRefGoogle Scholar
  12. 12.
    Daum, S., Ghaffari, M., Gilbert, S., Kuhn, F., Newport, C.: Maximal independent sets in multichannel radio networks. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pp. 335–344 (2013)Google Scholar
  13. 13.
    Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pp. 137–146 (2013)Google Scholar
  14. 14.
    Fisher, J., Henzinger, T.A., Mateescu, M., Piterman, N.: Bounded asynchrony: concurrency for modeling cell-cell interactions. In: Fisher, J. (ed.) FMSB 2008. LNCS, vol. 5054, pp. 17–32. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68413-8_2 CrossRefGoogle Scholar
  15. 15.
    Flury, R., Wattenhofer, R.: Slotted programming for sensor networks. In: IPSN (2010)Google Scholar
  16. 16.
    Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ‘life’. Sci. Am. 223(4), 120–123 (1970)CrossRefGoogle Scholar
  17. 17.
    Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 270–277 (2016)Google Scholar
  18. 18.
    Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.: Fault-containing self-stabilizing algorithms. In: Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 45–54 (1996)Google Scholar
  19. 19.
    Hayes, T., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure for low stretch under adversarial attack. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC), pp. 121–130 (2009)Google Scholar
  20. 20.
    König, M., Wattenhofer, R.: On local fixing. In: Baldoni, R., Nisse, N., Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 191–205. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-03850-6_14 CrossRefGoogle Scholar
  21. 21.
    Korman, A.: Improved compact routing schemes for dynamic trees. In: Proceedings of the 27th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 185–194 (2008)Google Scholar
  22. 22.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proceedings of the 23th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 300–309 (2004)Google Scholar
  23. 23.
    Kuhn, F., Schmid, S., Wattenhofer, R.: A self-repairing peer-to-peer system resilient to dynamic adversarial churn. In: Castro, M., Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 13–23. Springer, Heidelberg (2005). doi: 10.1007/11558989_2 CrossRefGoogle Scholar
  24. 24.
    Kutten, S., Peleg, D.: Fault-local distributed mending. J. Algorithms 30(1), 144–165 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kutten, S., Peleg, D.: Tight fault locality. SIAM J. Comput. 30(1), 247–268 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Li, X., Misra, J., Plaxton, C.G.: Active and concurrent topology maintenance. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 320–334. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30186-8_23 CrossRefGoogle Scholar
  27. 27.
    Lin, J.C., Huang, T.: An efficient fault-containing self-stabilizing algorithm for finding a maximal independent set. IEEE Trans. Parallel Distrib. Syst. 14(8), 742–754 (2003)CrossRefGoogle Scholar
  28. 28.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15, 1036–1055 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Malpani, N., Welch, J.L., Waidya, N.: Leader election algorithms for mobile ad hoc networks. In: Proceedings of the 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIAL-M), pp. 96–103 (2003)Google Scholar
  31. 31.
    Marr, C., Hütt, M.T.: Outer-totalistic cellular automata on graphs. Phys. Lett. A 373(5), 546–549 (2009)CrossRefzbMATHGoogle Scholar
  32. 32.
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Population Protocols. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2011)zbMATHGoogle Scholar
  33. 33.
    von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)Google Scholar
  34. 34.
    Panconesi, A., Srinivasan, A.: On the complexity of distributed network decomposition. J. Algorithms 20(2), 356–374 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  36. 36.
    Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set algorithm for growth-bounded graphs. In: Proceedings of the 27th ACM Symposium on Principles of Distributed Computing (PODC), pp. 35–44 (2008)Google Scholar
  37. 37.
    Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed algorithm for maximal independent set selection. In: Proceedings of the 32nd Symposium on Principles of Distributed Computing (PODC), pp. 147–156 (2013)Google Scholar
  38. 38.
    Shukla, S., Rosenkrantz, D., Ravi, S.S.: Observations on self-stabilizing graph algorithms for anonymous networks (extended abstract). In: Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 1–15 (1995)Google Scholar
  39. 39.
    Valiant, L.G.: Parallel computation. In: 7th IBM Symposium on Mathematical Foundations of Computer Science (1982)Google Scholar
  40. 40.
    Walter, J., Welch, J.L., Vaidya, N.: A mutual exclusion algorithm for ad hoc mobile networks. Wireless Netw. 7, 585–600 (1998)CrossRefzbMATHGoogle Scholar
  41. 41.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.TechnionHaifaIsrael
  2. 2.Comerge AGZürichSwitzerland

Personalised recommendations