Universal Systems of Oblivious Mobile Robots

  • Paola Flocchini
  • Nicola Santoro
  • Giovanni Viglietta
  • Masafumi Yamashita
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9988)

Abstract

An oblivious mobile robot is a stateless computational entity located in a spatial universe, capable of moving in that universe. When activated, the robot observes the universe and the location of the other robots, chooses a destination, and moves there. The computation of the destination is made by executing an algorithm, the same for all robots, whose sole input is the current observation. No memory of all these actions is retained after the move. When the spatial universe is a graph, distributed computations by oblivious mobile robots have been intensively studied focusing on the conditions for feasibility of basic problems (e.g., gathering, exploration) in specific classes of graphs under different schedulers. In this paper, we embark on a different, more general, type of investigation.

With their movements from vertices to neighboring vertices, the robots make the system transition from one configuration to another. Thus the execution of an algorithm from a given configuration defines in a natural way the computation of a discrete function by the system. Our research interest is to understand which functions are computed by which systems. In this paper we focus on identifying sets of systems that are universal, in the sense that they can collectively compute all finite functions. We are able to identify several such classes of fully synchronous systems. In particular, among other results, we prove the universality of the set of all graphs with at least one robot, of any set of graphs with at least two robots whose quotient graphs contain arbitrarily long paths, and of any set of graphs with at least three robots and arbitrarily large finite girths. We then focus on the minimum size that a network must have for the robots to be able to compute all functions on a given finite set. We are able to approximate the minimum size of such a network up to a factor that tends to 2 as n goes to infinity.

The main technique we use in our investigation is the simulation between algorithms, which in turn defines domination between systems. If a system dominates another system, then it can compute at least as many functions. The other ingredient is constituted by path and ring networks, of which we give a thorough analysis. Indeed, in terms of implicit function computations, they are revealed to be fundamental topologies with important properties. Understanding these properties enables us to extend our results to larger classes of graphs, via simulation.

References

  1. 1.
    Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15763-9_29 CrossRefGoogle Scholar
  2. 2.
    Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive perpetual grid exploration without sense of direction. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 251–265. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25873-2_18 CrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–219. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16926-7_20 CrossRefGoogle Scholar
  4. 4.
    D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids without multiplicity detection. Theoret. Comput. Sci. 610, 158–168 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering six oblivious robots on anonymous symmetric rings. J. Discrete Algorithms 26, 16–27 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4), 1055–1096 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Devismes, S., Lamani, A., Petit, F., Tixeuil, S.: Optimal torus exploration by oblivious mobile robots. Inria Technical Report HAL-00926573 (2014)Google Scholar
  9. 9.
    Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-synchronous oblivious robots. Theoret. Comput. Sci. 498, 10–27 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theoret. Comput. Sci. 412, 783–795 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. Theoret. Comput. Sci. 411(14–15), 1583–1598 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafeal (2012)MATHGoogle Scholar
  15. 15.
    Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Universal systems of oblivious mobile robots [cs.DC]. arXiv:1602.04881 (2016)
  16. 16.
    Gilbert, E., Riordan, J.: Symmetry types of periodic sequences. Ill. J. Math. 5(4), 657–665 (1961)MathSciNetMATHGoogle Scholar
  17. 17.
    Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision in regular bipartite graphs. Theoret. Comput. Sci. 509, 86–96 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algorithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13284-1_9 CrossRefGoogle Scholar
  19. 19.
    Johnson, S.: Generation of permutations by adjacent transposition. Math. Comput. 17, 282–285 (1963)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2_48 CrossRefGoogle Scholar
  21. 21.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theoret. Comput. Sci. 411, 3235–3246 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoret. Comput. Sci. 390, 27–39 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kosowski, A., Navarra, A.: Graph decomposition for improving memoryless periodic exploration. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 501–512. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03816-7_43 CrossRefGoogle Scholar
  25. 25.
    Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring exploration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13284-1_15 CrossRefGoogle Scholar
  26. 26.
    Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11764-5_17 Google Scholar
  27. 27.
    Ooshita, F., Tixeuil, S.: On the self-stabilization of mobile oblivious robots in uniform rings. Theoret. Comput. Sci. 568, 84–96 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Paola Flocchini
    • 1
  • Nicola Santoro
    • 2
  • Giovanni Viglietta
    • 1
  • Masafumi Yamashita
    • 3
  1. 1.University of OttawaOttawaCanada
  2. 2.Carleton UniversityOttawaCanada
  3. 3.Kyushu UniversityFukuokaJapan

Personalised recommendations