Controlling Rumor Cascade over Social Networks

  • Ragia A. Ibrahim
  • Hesham A. Hefny
  • Aboul Ella Hassanien
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 533)

Abstract

This work studies controlling rumor cascade over social networks problem. Previous research was mainly focused on removing nodes or edges to achieve the desired outcome. For this study, we firstly propose effective algorithms to solve rumor cascade controlling problem. Second, we conduct a theoretical study for our methods, including the hardness of the problem, the accuracy and complexity. Lastly, we conduct experiments on synthetic data set and compare results with local structure node measures.

Keywords

Graph mining Social networks Influence propagation Simulation 

References

  1. 1.
    Zafarani, R., Abbasi, M.A., Liu, H.: Social Media Mining: An Introduction. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  2. 2.
    Ryan, B., Gross, N.: The diffusion of hybrid seed corn in two iowa communities. Rural Sociol. 8(1), 15–24 (1943)Google Scholar
  3. 3.
    Coleman, J.S., Katz, E., Menzel, H.: Medical Innovation: A Diffusion Study. Bobbs-Merrill, New York (1966)Google Scholar
  4. 4.
    Oreo Cookie. Power out? No problem. Commercial (2013)Google Scholar
  5. 5.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003)Google Scholar
  6. 6.
    Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3(2), 9:1–9:23 (2009)CrossRefGoogle Scholar
  7. 7.
    Kuhlman, C.J., Tuli, G., Swarup, S., Marathe, M.V., Ravi, S.S.: Blocking simple and complex contagion by edge removal. In: 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013, pp. 399–408 (2013)Google Scholar
  8. 8.
    Kuhlman, C.J., Kumar, V.S.A., Ravi, S.S.: Controlling opinion propagation in online networks. Comput. Netw. 57(10), 2121–2132 (2013). Towards a Science of Cyber Security Security and Identity Architecture for the Future InternetCrossRefGoogle Scholar
  9. 9.
    Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468–5471 (2000)CrossRefGoogle Scholar
  10. 10.
    Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)CrossRefGoogle Scholar
  11. 11.
    Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 665–674. ACM, New York (2011)Google Scholar
  12. 12.
    Tong, H., Prakash, B.A., Tsourakakis, C., Eliassi-Rad, T., Faloutsos, C., Chau, D.H.: On the vulnerability of large graphs. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 1091–1096. IEEE (2010)Google Scholar
  13. 13.
    Tong, H., Prakash, B.A., Eliassi-Rad, T., Faloutsos, M., Faloutsos, C.: Gelling, and melting, large graphs by edge manipulation. In: Chen, X.W., Lebanon, G., Wang, H., Zaki, M.J. (eds.) CIKM, pp. 245–254. ACM (2012)Google Scholar
  14. 14.
    Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)CrossRefGoogle Scholar
  15. 15.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 1029–1038 (2010)Google Scholar
  16. 16.
    David, E., Jon, K.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York (2010)MATHGoogle Scholar
  17. 17.
    Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. SIGMOD Rec. 42(2), 17–28 (2013)CrossRefGoogle Scholar
  18. 18.
    Kleinberg, J.: Cascading behavior in networks: algorithmic and economic issues. Algorithmic Game Theory 24, 613–632 (2007)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Van Briesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 420–429 (2007)Google Scholar
  21. 21.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. Inter J. Complex Syst. 1695, 1–9 (2006)Google Scholar
  22. 22.
    Narayanam, R., Garg, D., Lamba, H.: Discovering signature of social networks with application to community detection. In: 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS), pp. 1–7. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ragia A. Ibrahim
    • 1
    • 3
  • Hesham A. Hefny
    • 1
  • Aboul Ella Hassanien
    • 2
    • 3
  1. 1.Institute of Statistical Studies and Research (ISSR)Cairo UniversityGizaEgypt
  2. 2.Faculty of Computers and InformationCairo UniversityGizaEgypt
  3. 3.Scientific Research Group in EgyptGizaEgypt

Personalised recommendations