Advertisement

Biorefineries pp 227-281 | Cite as

Biorefineries in the World

  • Francisco GírioEmail author
  • Susana Marques
  • Filomena Pinto
  • Ana Cristina Oliveira
  • Paula Costa
  • Alberto Reis
  • Patrícia Moura
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 57)

Abstract

This chapter intends to give a brief overview of current conventional and advanced biomass-based biorefineries in the World. While the conventional biorefineries use mature and commercial technology , the advanced biorefineries (e.g., lignocellulosic-based biofuel biorefineries , microalgae-based biorefineries ) have different degrees of technology-readiness level and regardless the process technology, only a few of them have reached the commercial scale although the profitability remains a quest. The most representative’s examples of biorefineries in the World are reviewed in this chapter with special emphasis on thermochemical - and biochemical -based biomass processing technologies for advanced biofuel biorefineries at pilot, demo or commercial stage. Few examples of product (non-energetic)-driven biorefineries are also discussed, such as pulp and paper biorefineries and lactic acid-producing biorefineries, mainly because only a limited number are in operation because their key technologies are still in the R&D, pilot or demo stage.

Keywords

Cellulosic Ethanol Plant Plant Technology Readiness Level Gray Harbor Gasification Gasification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161(4):345–351. doi: 10.1007/bf00303591 CrossRefGoogle Scholar
  2. Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioprod Biorefin 5:93–114CrossRefGoogle Scholar
  3. Ahmed A, Cateni BG, Huhnke RL, Lewis RS (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenergy 30:665–672. doi: 10.1016/j.biombioe.2006.01.007 CrossRefGoogle Scholar
  4. Alberta Pacific Forest Industries Inc. (2016) https://alpac.ca. Accessed Feb 2016
  5. Bacovsky D, Ludwiczek N, Ognissanto M, Wörgetter M (2013) Status of advanced biofuels demonstration facilities in 2012. IEA Bioenergy Task 39 Report 1–209Google Scholar
  6. Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Bioeng 8:210. doi: 10.1186/s13068-015-0393-x Google Scholar
  7. Biodiesel Magazine—The latest news and data about biodiesel, Dec 2015. http://www.biodieselmagazine.com/plants/listplants/. Accessed Feb 2016
  8. Bioenergy2020+ (Renewable Energy Network Austria, Austrian Bio Energy Centre), FJ-BLT (Biomass-Logistics-Technology) IEA Bioenergy Task 39 ‘Commercializing 1st- and 2nd-Generation Liquid Biofuels from Biomass’: Database on facilities for the production of liquid and gaseous biofuels for transport. http://demoplants.bioenergy2020.eu/. Accessed Feb 2016
  9. Caesar B (2008) Industrial biotechnology: more than just ethanol. Factors driving industry growth. Ind Biotechnol 4:50–54Google Scholar
  10. Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457CrossRefGoogle Scholar
  11. Carvalheiro F, Duarte LC, Medeiros R, Gírio FM (2004) Optimization of brewery’s spent grain dilute-acid hydrolysis for the production of pentose-rich culture media. Appl Biochem Biotechnol 113–116:1059–1072CrossRefGoogle Scholar
  12. CelluForce (2016) www.celluforce.com. Accessed Feb 2016
  13. CELPA—Portuguese Association of Paper Industry. www.celpa.pt. Accessed Oct 2011
  14. Chen W, Liew FM, Köpke M (2013) Recombinant microorganisms and uses therefor. World Patent WO 2013/180584Google Scholar
  15. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549CrossRefGoogle Scholar
  16. Cherubini F, Stromman AH (2010) Production of biofuels and biochemicals from lignocellulosic biomass: estimation of maximum theoretical yields and efficiencies using matrix agebra. Energy Fuels 24:2657–2666CrossRefGoogle Scholar
  17. Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb Technol 44(5):281–288. doi: 10.1016/j.enzmictec.2008.11.002 CrossRefGoogle Scholar
  18. Daniell J, Köpke M, Simpson S (2012) Commercial biomass syngas fermentation. Energies 5:5372–5417. doi: 10.3390/en5125372 CrossRefGoogle Scholar
  19. Davenport R (2008) Chemicals and polymers from biomass. Ind Biotechnol 4:59–63CrossRefGoogle Scholar
  20. Debabov VG (2013) Bioethanol from synthesis gas. Appl Biochem Microbiol 49(7):619–628. doi: 10.1134/S000368381307003X CrossRefGoogle Scholar
  21. Domtar (2016) www.domtar.com. Accessed Feb 2016
  22. Drzyzga O, Revelles O, Durante-Rodríguez G, Díaz E, García JL, Prieto A (2015) New challenges for syngas fermentation: towards production of biopolymers. J Chem Technol Biotechnol 90(10):1735–1751. doi: 10.1002/jctb.4721 CrossRefGoogle Scholar
  23. Dürre P, Eikmanns BJ (2015) C1-Carbon sources for chemical and fuel production by microbial gas fermentation. Curr OpinBiotechnol 35:63–72. doi: 10.1016/j.copbio.2015.03.008 Google Scholar
  24. E4tech, RE-CORD, WUR (2015) From the sugar platform to biofuels and biochemicals. Final report for the European Commission, contract No. ENER/C2/423-2012/SI2.673791Google Scholar
  25. Ethanol Producer Magazine (2016) http://www.ethanolproducer.com/plants/listplants/US/Existing/Sugar-Starch/. Accessed Feb 2016
  26. Eurobserv’er (2015) Biofuels barometer, http://www.eurobserv-er.org/biofuels-barometer-2015. Accessed Feb 2016
  27. European Biodiesel Board. http://www.ebb-eu.org/stats.php. Accessed Jan 2016
  28. European Biofuels Annual (2015) (GAIN Report Number: NL5028). Global Agriculture Information Network, USDA Foreign Agriculture ServiceGoogle Scholar
  29. European Biofuels Technology Platform. Accelerating deployment of advanced biofuels in Europe. http://biofuelstp.eu/sugar_crops.html. Accessed Jan 2016
  30. FAO (2014) FAO Statistics - Food and agriculture data. http://www.fao.org/faostat/en/#home. Accessed Feb 2016  
  31. Ferreira CSR (2011) Strategies to improve D-xylose and D-glucose co-fermentation for the production of second generation bioethanol. Master Thesis in Biotechnology, Instituto Superior Técnico, Lisboa, PortugalGoogle Scholar
  32. Five Clusters (2013) Five clusters in west Sweden with strength and potential for the future. http://www.vgregion.se/upload/Regionutveckling/Publikationer/2013/Five_Clusters_2013.pdf
  33. Gaddy JL, Arora DK, Ko C-W, Phillips JR, Basu R, Wilkstrom CV, Clausen EC (2012) Methods for increasing the production of ethanol from microbial fermentation. US Patent 2012/122173Google Scholar
  34. Gaddy JL, Ko C-W, Phillips JR, Slape MS (2014) Methods for sequestering carbon dioxide into alcohols via gasification fermentation. US Patent 2014/45257Google Scholar
  35. Gak E, Tyurin M, Kiriukhin M (2014) Genome tailoring powered production of isobutanol in continuous CO2/H2 blend fermentation using engineered acetogen biocatalyst. J Ind Microbiol Biotechnol 41:763–781. doi: 10.1007/s10295-014-1416-5 CrossRefGoogle Scholar
  36. Gao Y, Gregor C, Liang Y, Tang D, Tweed C (2012) Algae biodiesel—a feasibility report. Chem Central J 6(Suppl 1):S1. http://journal.chemistrycentral.com/content/6/S1/S1
  37. Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312–319CrossRefGoogle Scholar
  38. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Biores Technol 101:4775–4800CrossRefGoogle Scholar
  39. Gírio F, Kurkela E, Kiel J, Lankhorst RK (2013) Report EERA-EIBI WORKSHOP “Longer term R&D needs and priorities on bioenergy: bioenergy beyond 2020”, p 47Google Scholar
  40. Glasser WG, Wright RS (1998) Steam-assisted biomass fractionation. II. Fractionation behavior of various biomass resources. Biomass Bioenergy 14:219–235CrossRefGoogle Scholar
  41. González LE, Díaz GC, Aranda DAG, Cruz YR (2015) Fortes MM biodiesel production based in microalgae: a biorefinery approach. Nat Sci 7:358–369. doi: 10.4236/ns.2015.77039 Google Scholar
  42. Gray KA, Zhao LS, Emptage M (2006) Bioethanol Curr Opin Chem Biol 10:141–146CrossRefGoogle Scholar
  43. Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D (2010) Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour Technol 101(22):8784–8789. doi: 10.1016/j.biortech.2010.06.072 CrossRefGoogle Scholar
  44. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556CrossRefGoogle Scholar
  45. Hariskos J, Posten C (2014) Biorefinery of microalgae—opportunities and constraints for different production scenarios. Biotechnol J 9:739–752CrossRefGoogle Scholar
  46. Hickey R (2013) Processes for enhancing the performance of large-scale, stirred tank anaerobic fermentors and apparatus therefor. US Patent 2013/0078689Google Scholar
  47. Hickey R, Jianxin D, Reeves A, Richard ET (2014) Processes for the anaerobic bioconversion of syngas to oxygenated organic compound with in situ protection from hydrogen cyanide. US Patent 2014/0273125Google Scholar
  48. Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107CrossRefGoogle Scholar
  49. Ibeto CN, Ofoefule AU, Agbo KE (2011) A Global overview of biomass potentials for bioethanol production: a renewable alternative fuel. Trends Appl Sci Res 6:410–425CrossRefGoogle Scholar
  50. IEA Bioenergy (2014) BIOREFINING—sustainable and synergetic processing of biomass into marketable food & feed ingredients, products (chemicals, materials) and energy (fuels, power, heat). IEA Bioenergy Task 42 Report 1–66Google Scholar
  51. INEOS Bio, USA (2012) Process technology process description. http://www.ineos.com/globalassets/ineos-group/businesses/ineos-bio/technology/ineos-us-bio-process-description-brochure_april-2012.pdf. INEOS Process Technology Brochure
  52. Jacob-Lopes E, Ramírez MLG, Queiroz MI, Zepka LQ (2015) In: Jacob-Lopes E, Zepka LQ (eds) Microalgal biorefineries. Biomass production and uses, pp 81–106. doi: 10.5772/59969, ISBN 978-953-51-2181-7
  53. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145CrossRefGoogle Scholar
  54. Kamm B et al (2006) Biorefineries. In: Industrial processes and products. Wiley-VCHGoogle Scholar
  55. Kennes D, Abubackar HN, Kennes C (2016) Bioethanol production from biomass: carbohydrate vs syngas fermentation. J Chem Technol Biotechnol 91:304–317. doi: 10.1002/jctb.4842 CrossRefGoogle Scholar
  56. Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu Rev Energy Environ 25:199–244CrossRefGoogle Scholar
  57. Köpke M, Liew F (2012) Production of butanol from carbon monoxide by a recombinant microorganism. World Patent WO 2012/053905Google Scholar
  58. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A et al (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci USA 107(29):13087–13092. doi: 10.1073/pnas.1004716107 CrossRefGoogle Scholar
  59. Köpke M, Liew F, Mueller A (2013) Recombinant microorganisms and uses therefor. World Patent WO 2013/185123Google Scholar
  60. Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei. Bioresour Technol 102(10):5794–5799. doi: 10.1016/j.biortech.2011.02.032 CrossRefGoogle Scholar
  61. Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: Production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87. doi: 10.1016/j.copbio.2013.12.001 CrossRefGoogle Scholar
  62. Lee JH, Reddy KH, Jung JS, Yang EH, Moon DJ (2014) Role of support on higher alcohol synthesis from syngas. Appl Catal A 480:128–133. doi: 10.1016/j.apcata.2014.04.026 CrossRefGoogle Scholar
  63. Liew FM, Köpke M, Simpson SD (2013) Gas fermentation for commercial biofuels production. In: Liquid, gaseous and solid biofuels—Conversion techniques, pp 125–173. doi: 10.5772/52164
  64. Lopes da Silva T, Reis A (2015) Algal biorefinery: an integrated approach. In: Debabrata D (eds) Scale up problems for the large scale production of algae. Springer, Berlin, pp 155–186. doi: 10.1007/978-3-319-22813-6_6
  65. Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N (2007) Bio-syngas production from biomass catalytic gasification. Energy Convers Manage 48:1132–1139. doi: 10.1016/j.enconman.2006.10.014
  66. Lynd LR, Cushman JH, Nichols RJ (1991) Wyman CE Fuel ethanol from cellulosic biomass. Science 251:1318–1323CrossRefGoogle Scholar
  67. Mascoma (2007) Mascoma buys Hoosier biofuels startup. Mass high tech. J N Engl TechnolGoogle Scholar
  68. McElroy AK (2007) Not so run of the mill. Biomass Mag 10:38–43Google Scholar
  69. Muffler K, Ulber R (2008) Use of renewable raw materials in the chemical industry—Beyond sugar and starch. Chem Eng Technol 31:638–646CrossRefGoogle Scholar
  70. Munasinghe PC, Khanal SM (2011) Biomass-derived syngas fermentation into biofuels. Biofuels 101(13):79–98. doi: 10.1016/B978-0-12-385099-7.00004-8 CrossRefGoogle Scholar
  71. NatureWorks LLC. http://www.natureworksllc.com/#3. Accessed Jan 2016
  72. NovaCana (2016) http://www.novacana.com/usinas-brasil/. Accessed Jan 2016
  73. Nurra C, Torras C, Clavero E, Ríos S, Rey M, Lorente E, Farriol X, Salvadó J (2014) Biorefinery concept in a microalgae pilot plant. Culturing, dynamic filtration and steam explosion fractionation. Bioresour Technol 163:136–142. doi: 10.1016/j.biortech.2014.04.009 CrossRefGoogle Scholar
  74. Perez M, Richter H, Loftus SE, Angenent LT (2013) Biocatalytic reduction of short-chain carboxylic acids into their corresponding Alcohols with syngas fermentation. Biotechnol Bioeng 110(4):1066–1077. doi: 10.1002/bit.24786 CrossRefGoogle Scholar
  75. Petrick I, Dombrowski L, Kröger M, Beckert T, Kuchling T, Kureti S (2013) Algae biorefinery—Material and energy use of algae. DBFZ Report No. 16, p 164Google Scholar
  76. Proethanol2G EU 7th FWP project. www.proethanol2g.org. Accessed Feb 2016
  77. Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels. Integrating biofuels and pulp production. Ind Biotechnol 2:55–65CrossRefGoogle Scholar
  78. Rajagopalan S, Ponnampalam E, McCalla D, Stowers M (2005) Enhancing profitability of dry mill ethanol plants. Appl Biochem Biotechnol 120(1):37–50CrossRefGoogle Scholar
  79. Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J (2015) How can alcohol production be improved in carboxydotrophic Clostridia? Process Biochem 50(7):1047–1055. doi: 10.1016/j.procbio.2015.03.019 CrossRefGoogle Scholar
  80. Rapagn S, Provendier H, Petit C, Kiennemann A (2002) Foscolo PU Development of catalysts suitable for hydrogen or syn-gas production from biomass gasi cation. Biomass Bioenergy 22:377–388CrossRefGoogle Scholar
  81. Renewable Fuels Association (2005) How ethanol is made? http://www.ethanolrfa.org/how-ethanol-is-made/. Accessed Feb 2016
  82. Sammons N, Eden M, Yuan W, Cullinan H, Aksoy B (2007) A flexible framework for optimal biorefinery product allocation. Environ Prog 26:349–354CrossRefGoogle Scholar
  83. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295CrossRefGoogle Scholar
  84. Sassner P, Martensson CG, Galbe M, Zacchi G (2008) Steam pretreatment of H2SO4 impregnated salix for the production of bioethanol. Bioresour Technol 99:137–145CrossRefGoogle Scholar
  85. Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191–2198. doi: 10.1016/j.febslet.2012.04.043 CrossRefGoogle Scholar
  86. Schultz M, Derek G (2013) Improved carbon capture in fermentation. World Patent WO 2013/119866Google Scholar
  87. Sendich E, Laser M, Kim S, Alizadeh H, Laureano-Perez L, Dale B, Lynd L (2008) Recent process improvements for the ammonia fiber expansion (AFEX) Process and resulting reductions in minimum ethanol selling price. Bioresour Technol 99:8429–8435CrossRefGoogle Scholar
  88. Simpson SD, Köpke M, Liew FM (2012a) Recombinant microorganisms with increased tolerance to ethanol. World Patent WO 2012/105853Google Scholar
  89. Simpson SD, Köpke M, Liew FM, Chen WY (2012b) Recombinant microorganisms and uses therefor. World Patent WO 2012/115727Google Scholar
  90. Unica (Brazilian Sugarcane Industry Association) and ApexBrasil (Brazilian Trade and Investment Promotion Agency) (2016) http://sugarcane.org/sugarcane-products/ethanol. Accessed Jan 2016
  91. Vaidya AN, Pandey RA, Mudliar S, Kumar MS, Chakrabarti T, Devotta S (2005) Production and recovery of lactic acid for polylactide—An overview. Crit Rev Environ Sci Technol 35:429–467CrossRefGoogle Scholar
  92. van Ree R, Annevelink E (2007) Status report biorefinery. Agrotechnology and Food Science Group, Wagninger, NLGoogle Scholar
  93. van Wyk JPH (2011) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177Google Scholar
  94. Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 22:245–264Google Scholar
  95. Wikipedia (2016) Mascoma Corporation. https://en.wikipedia.org/wiki/Mascoma_Corporation. Accessed Feb 2016
  96. Wilkins MR, Atiyeh HK (2011) Microbial production of ethanol from carbon monoxide. Curr Opin Biotechnol 22(3):326–330. doi: 10.1016/j.copbio.2011.03.005 CrossRefGoogle Scholar
  97. Younesi H, Najafpour G, Mohamed AR (2005) Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J 27(2):110–119. doi: 10.1016/j.bej.2005.08.015
  98. Zahn JA, Saxena J (2012) Novel ethanologenic Clostridium species, Clostridium coskatii. US Patent 2012/0156747Google Scholar
  99. Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35:367–375CrossRefGoogle Scholar
  100. Zwart RWR (2006) Biorefinery the Worldwide Status at the Beginning of 2006—Including the highlights of the 1st international biorefinery workshop and an overview of markets and prices of biofuels and chemicals, Wageninger, NLGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francisco Gírio
    • 1
    Email author
  • Susana Marques
    • 1
  • Filomena Pinto
    • 1
  • Ana Cristina Oliveira
    • 1
  • Paula Costa
    • 1
  • Alberto Reis
    • 1
  • Patrícia Moura
    • 1
  1. 1.LNEGLisboaPortugal

Personalised recommendations