Skip to main content

Biorefinery Modeling and Optimization

  • Chapter
  • First Online:
Biorefineries

Part of the book series: Lecture Notes in Energy ((LNEN,volume 57))

Abstract

Most biorefinery processes are still in an early stage of development. Some pilot and demonstration plants exist, but little or no information is available from real installations at commercial scale, which is needed to determine their economic and environmental feasibility. Process simulation is a powerful tool to address this issue, since it is possible to determine mass and energy balances without the necessity of those industrial facilities. From this information, consumption of biomass and other chemicals or auxiliary services can be estimated, and plant equipment can be sized, allowing the identification of the main drawbacks and bottlenecks, the necessity of layouts modification and their optimization. This chapter reviews the different stages to carry process simulation out. As well, the main thermochemical (combustion, pyrolysis, and gasification), biochemical (fermentation) and chemical (fractionation, lignin depolymerization, and platform molecules obtaining) processes for biomass processing are discussed in terms of best approaches to simulate them. Finally, some common aspects like pinch analysis, process optimization, and upscaling are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Aspen Technology—Aspentech [Internet]. Available from: http://www.aspentech.com/products/aspen-plus.aspx.

  2. 2.

    ProSim [Internet]. Available from: http://www.prosim.net/.

  3. 3.

    CHEMCAD [Internet]. Available from: http://www.chemstations.com/.

  4. 4.

    TRNSYS [Internet]. Available from: http://www.trnsys.com/.

  5. 5.

    Merichem Company. LO-CAT process for cost-effective desulfurization of all types of gas streams.

  6. 6.

    ExPE software. Exergy Performance Evaluation. Systems Analysis Unit, IMDEA Energy Institute.

References

  • Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM et al (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89:S29–S35

    Google Scholar 

  • Aspen Plus Help (2010) Getting started modeling processes with solids

    Google Scholar 

  • Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130(2):713–728

    Google Scholar 

  • Biegler LT (2010) Introduction to process optimization. In: Nonlinear programming: concepts, algorithms, and applications to chemical processes. Society for Industrial and Applied Mathematics—Mathematical Optimization Society, Philadelphia, pp 1–16

    Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73

    Article  Google Scholar 

  • Bugg TD, Rahmanpour R (2015) Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 29:10–17

    Google Scholar 

  • Calonaci M, Grana R, Barker Hemings E, Bozzano G, Dente M, Ranzi E (2010) Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy Fuels 24(10):5727–5734

    Google Scholar 

  • Chávez-Sifontes M, Domine ME (2013) Lignina, estructura y aplicaciones: Métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Av en Ciencias e Ing 4(4):15–46

    Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421

    Google Scholar 

  • Choudhary TV, Phillips CB (2011) Renewable fuels via catalytic hydrodeoxygenation. Appl Catal A Gen 397(1–2):1–12

    Google Scholar 

  • Ciferno JP, Marano JJ (2002) Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production

    Google Scholar 

  • Directive 2003/30/EC D. On the promotion of the use of biofuels or other renewable fuels for transport

    Google Scholar 

  • Directive 2009/28/EC D. On the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

    Google Scholar 

  • Directive (EU) 2015/1513. On the promotion of the use of energy from renewable sources and amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC

    Google Scholar 

  • Dupont C, Chen L, Cances J, Commandre J-M, Cuoci A, Pierucci S et al (2009) Biomass pyrolysis: kinetic modelling and experimental validation under high temperature and flash heating rate conditions. J Anal Appl Pyrolysis 85(1–2):260–267

    Article  Google Scholar 

  • Faravelli T, Frassoldati A, Migliavacca G, Ranzi E (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34(3):290–301

    Google Scholar 

  • French RJ, Hrdlicka J, Baldwin R (2010) Mild hydrotreating of biomass pyrolysis oils to produce a suitable refinery feedstock. Environ Prog Sustain Energy 29(2)

    Google Scholar 

  • Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Google Scholar 

  • García A, Alriols MG, Llano-Ponte R, Labidi J (2011) Energy and economic assessment of soda and organosolv biorefinery processes. Biomass Bioenergy 35(1):516–525

    Article  Google Scholar 

  • Gundersen T (2000) A process integration PRIMER. International energy agency report

    Google Scholar 

  • Hannula I, Kurkela E (2012) A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming. Biomass Bioenergy 38:58–67

    Google Scholar 

  • Hayes D (2013) DIBANET process report. Report on optimal use of DIBANET Feedstocks and Technologies

    Google Scholar 

  • Heidenreich S, Foscolo PU (2015) New concepts in biomass gasification. Prog Energy Combust Sci 46:72–95

    Google Scholar 

  • Hoekstra E, Westerhof RJM, Brilman W, Van Swaaij WPM, Kersten SRA, Hogendoorn KJA et al (2012) Heterogeneous and homogeneous reactions of pyrolysis vapors from pine wood. AIChE J 58(9):2830–2842

    Article  Google Scholar 

  • IEA Bioenergy Task 42 (2009) Biorefineries: adding value to the sustainable utilisation of biomass

    Google Scholar 

  • Imman S, Arnthong J, Burapatana V, Champreda V, Laosiripojana N (2014) Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chem Eng J 278:85–91

    Google Scholar 

  • Iribarren D, Peters JF, Petrakopoulou F, Dufour J (2012) Well-to-wheels comparison of the environmental profile of pyrolysis based biofuels. In: 20th European biomass conference and exhibition

    Google Scholar 

  • Iribarren D, Susmozas A, Petrakopoulou F, Dufour J (2014) Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. J Clean Prod 69:165–175

    Google Scholar 

  • Jacquet N, Quiévy N, Vanderghem C, Janas S, Blecker C, Wathelet B et al (2011) Influence of steam explosion on the thermal stability of cellulose fibres. Polym Degrad Stab 96(9):1582–1588

    Google Scholar 

  • Jeon J-W, Zhang L, Lutkenhaus JL, Laskar DD, Lemmon JP, Choi D et al (2015) Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. ChemSusChem 8(3):428–432

    Google Scholar 

  • Jin H, Liu R, He Y (2012) Kinetics of batch fermentations for ethanol production with immobilized saccharomyces cerevisiae growing on sweet sorghum stalk juice. Procedia Environ Sci 12:137–145

    Google Scholar 

  • Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping—methods and pulp properties. Biomass 13(1):45–65

    Article  Google Scholar 

  • Jones SB, Valkenburg C, Walton CW, Elliott DC, Holladay JE, Stevens DJ et al (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking : a design case. Energy

    Google Scholar 

  • Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Convers Biorefinery 3(3):199–212

    Article  Google Scholar 

  • Kihedu J (2015) Torrefaction and combustion of ligno-cellulosic biomass. Energy Procedia 75:162–167

    Google Scholar 

  • Klemeš JJ, Kravanja Z (2013) Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP). Curr Opin Chem Eng 2(4):461–474

    Article  Google Scholar 

  • Kücük MM, Demirbas A (1997) Biomass conversion processes. Energy Convers Manag 38(2):151–165

    Google Scholar 

  • Laclaire CE, Barrett CJ (2002) Technical, environmental and economic feasibility of bio-oil in New Hampshire’s North Country

    Google Scholar 

  • Leksawasdi N, Joachimsthal EL, Rogers PL (2001) Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis 1087–1093

    Google Scholar 

  • Levin M (2001) Pharmaceutical process scale-up. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  • Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068

    Article  Google Scholar 

  • Ma X, Cui K, Hao W, Ma R, Tian Y, Li Y (2015) Alumina supported molybdenum catalyst for lignin valorization: effect of reduction temperature. Bioresour Technol 192:17–22

    Google Scholar 

  • March L (1998) Introduction to pinch technology. Northwich, Cheshire, England

    Google Scholar 

  • Martín-Sampedro R, Eugenio ME, García JC, Lopez F, Villar JC, Diaz MJ (2012) Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of eucalyptus globulus. Biomass Bioenergy 42:97–106

    Article  Google Scholar 

  • Morales-Rodriguez R, Rodriguez-Gomez D, Sales-Cruz M, de los Reyes-Heredia JA, Pérez Cisneros ES (2014) Model-based analysis for acetone-butanol-ethanol production process through a dynamic simulation. Comput Aided Chem Eng 33:133–138

    Google Scholar 

  • Pan X, Saddler JN (2013) Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam. Biotechnol Biofuels 6(1):12

    Google Scholar 

  • Patel M (2006) BREW project report. Medium and long-term opportunities and risks of the biotechnological production of bulk chemicals from renewable resources—The Potential of White Biotechnology

    Google Scholar 

  • Peters JF, Iribarren D, Dufour J (2013) Predictive pyrolysis process modelling in Aspen Plus. In: 21st European biomass conference and exhibition, Copenhagen

    Google Scholar 

  • Peters JF, Iribarren D, Dufour J (2014a) Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel 139:441–456

    Google Scholar 

  • Peters JF, Petrakopoulou F, Dufour J (2014b) Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Process Technol 119:245–255

    Google Scholar 

  • Peters JF, Banks SW, Susmozas A, Dufour J (2014c) Experimental verification of a predictive pyrolysis model in Aspen Plus. In: 22nd European biomass conference and exhibition, Hamburg, Germany

    Google Scholar 

  • Ramires EC, Megiatto JDJ, Gardrat C, Castellan A, Frollini E (2010) Valorization of an industrial organosolv-sugarcane bagasse lignin: characterization and use as a matrix in biobased composites reinforced with sisal fibers. Biotechnol Bioeng 107(4):612–621

    Google Scholar 

  • Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S et al (2008) Chemical kinetics of biomass pyrolysis. Energy Fuels 22(6):4292–4300

    Google Scholar 

  • Ringer M, Putsche V, Scahill J (2006) Large-scale pyrolysis oil production: a technology assessment and economic analysis

    Google Scholar 

  • Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, pp 201–222

    Google Scholar 

  • Sarma SJ, Pachapur V, Brar SK, Le Bihan Y, Buelna G (2015) Hydrogen biorefinery: potential utilization of the liquid waste from fermentative hydrogen production. Renew Sustain Energy Rev 50:942–951

    Google Scholar 

  • Slininger PJ, Branstrator JE, Lomont JM, Dien BS, Okos MR, Ladisch MR et al (1990) Stoichiometry and kinetics of xylose fermentation by Pichia Stipitis. Ann N Y Acad Sci 589(1):25–40

    Google Scholar 

  • Slininger PJ, Dien BS, Lomont JM, Bothast RJ, Ladisch MR, Okos MR (2014) Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose. Biotechnol Bioeng 111(8):1532–1540

    Article  Google Scholar 

  • Spath P, Aden A, Eggeman T, Ringer M, Wallace B, Jechura J (2005) Biomass to hydrogen production detailed design and economics utilizing the Battelle Columbus Laboratory indirectly-heated gasifier

    Google Scholar 

  • Venderbosch R, Heeres H (2011) Pyrolysis oil stabilisation by catalytic hydrotreatment. Biofuel’s Engineering Process Technology, pp 385–410

    Google Scholar 

  • Wang H, Tucker M, Ji Y (2013) Recent development in chemical depolymerization of lignin: a review. J Appl Chem 2013:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Dufour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanz, A., Susmozas, A., Peters, J., Dufour, J. (2017). Biorefinery Modeling and Optimization. In: Rabaçal, M., Ferreira, A., Silva, C., Costa, M. (eds) Biorefineries. Lecture Notes in Energy, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-48288-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48288-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48286-6

  • Online ISBN: 978-3-319-48288-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics