Improvisational Computational Storytelling in Open Worlds

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10045)

Abstract

Improvisational storytelling involves one or more people interacting in real-time to create a story without advanced notice of topic or theme. Human improvisation occurs in an open-world that can be in any state and characters can perform any behaviors expressible through natural language. We propose the grand challenge of computational improvisational storytelling in open-world domains. The goal is to develop an intelligent agent that can sensibly co-create a story with one or more humans through natural language. We lay out some of the research challenges and propose two agent architectures that can provide the basis for exploring the research issues surrounding open-world human-agent interactions.

Keywords

Brave new ideas Intelligent narrative technologies Computational improvisation Interactive narrative 

References

  1. 1.
    Riedl, M.O., Bulitko, V.: Interactive narrative: an intelligent systems approach. AI Mag. 34, 67–77 (2013)Google Scholar
  2. 2.
    Bates, J.: Virtual reality, art, and entertainment. Presence Teleoperators Virtual Environ. 1, 133–138 (1992)CrossRefGoogle Scholar
  3. 3.
    Riedl, M.O., Stern, A., Dini, D.M., Alderman, J.M.: Dynamic experience management in virtual worlds for entertainment, education, and training. ITSSA Spec. Issue Agent Based Syst. Hum. Learn. 4, 23–42 (2008)Google Scholar
  4. 4.
    Riedl, M., Saretto, C.J., Young, R.M.: Managing interaction between users and agents in a multi-agent storytelling environment. In: 2nd International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 741–748. ACM (2003)Google Scholar
  5. 5.
    Porteous, J., Cavazza, M.: Controlling narrative generation with planning trajectories: the role of constraints. In: Iurgel, I.A., Zagalo, N., Petta, P. (eds.) ICIDS 2009. LNCS, vol. 5915, pp. 234–245. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Nelson, M.J., Mateas, M.: Search-based drama management in the interactive fiction anchorhead. In: 1st Annual Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 99–104 (2005)Google Scholar
  7. 7.
    Weyhrauch, P.W.: Guiding interactive drama (1997)Google Scholar
  8. 8.
    Nelson, M.J., Roberts, D.L., Isbell, C.L., Mateas, M.: Reinforcement learning for declarative optimization-based drama management. In: 5th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 775–782. ACM (2006)Google Scholar
  9. 9.
    Díaz-Agudo, B., Gervás, P., Peinado, F.: A case based reasoning approach to story plot generation. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 142–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Zhu, J., Ontañón, S.: Shall I compare thee to another story?—an empirical study of analogy-based story generation. IEEE Trans. Comput. Intell. AI Games 6, 216–227 (2014)CrossRefGoogle Scholar
  11. 11.
    Ware, S.G., Young, R.M.: Rethinking traditional planning assumptions to facilitate narrative generation. In: 2nd Workshop on Computational Models of Narrative (CMN 2010), pp. 71–72 (2010)Google Scholar
  12. 12.
    Mateas, M., Stern, A.: Integrating plot, character and natural language processing in the interactive drama Façade. In: Technologies for Interactive Digital Storytelling and Entertainment Conference, pp. 139–151 (2003)Google Scholar
  13. 13.
    Guzdial, M., Harrison, B., Li, B., Riedl, M.O.: Crowdsourcing open interactive narrative. In: 10th International Conference on the Foundations of Digital Games, Pacific Grove, CA (2015)Google Scholar
  14. 14.
    Swanson, R., Gordon, A.S.: Say anything: a massively collaborative open domain story writing companion. In: Spierling, U., Szilas, N. (eds.) ICIDS 2008. LNCS, vol. 5334, pp. 32–40. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Magerko, B., Manzoul, W., Riedl, M., Baumer, A., Fuller, D., Luther, K., Pearce, C.: An empirical study of cognition and theatrical improvisation. In: 7th ACM Conference on Creativity and Cognition, pp. 117–126. ACM (2009)Google Scholar
  16. 16.
    Magerko, B., O’Neill, B.: Formal models of western films for interactive narrative technologies. In: 2nd Workshop on Computational Models of Narrative, Istanbul, Turkey, pp. 83–90 (2012)Google Scholar
  17. 17.
    Brisson, A., Magerko, B., Paiva, A.: Tilt riders: improvisational agents who know what the scene is about. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 35–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Li, B., Lee-Urban, S., Johnston, G., Riedl, M.O.: Story generation with crowdsourced plot graphs. In: 27th AAAI Conference on Artificial Intelligence, pp. 598–604 (2013)Google Scholar
  19. 19.
    Chambers, N., Jurafsky, D.: Unsupervised learning of narrative event chains. In: Association of Computational Linguistics, pp. 789–797. Citeseer (2008)Google Scholar
  20. 20.
    Pichotta, K., Mooney, R.J.: Learning statistical scripts with LSTM recurrent neural networks. In: 30th AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix, Arizona (2016)Google Scholar
  21. 21.
    Kipper-Schuler, K.: VerbNet: a broad-coverage, comprehensive verb lexicon (2005). http://repository.upenn.edu/dissertations/AAI3179808/
  22. 22.
    Zwaan, R.A., Langston, M.C., Graesser, A.C.: The construction of situation models in narrative comprehension: an event-indexing model. Psychol. Sci. 6, 292–297 (1995)CrossRefGoogle Scholar
  23. 23.
    Niehaus, J., Young, R.M.: Cognitive models of discourse comprehension for narrative generation. Lit. Linguist. Comput. 29, 561–582 (2014)CrossRefGoogle Scholar
  24. 24.
    O’Neill, B., Riedl, M.: Dramatis: a computational model of suspense. In: AAAI, vol. 2, pp. 944–950 (2014)Google Scholar
  25. 25.
    Riedl, M., Li, B., Ai, H., Ram, A.: Robust and authorable multiplayer storytelling experiences. In: 7th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 189–194 (2011)Google Scholar
  26. 26.
    Speer, R., Havasi, C.: Representing general relational knowledge in ConceptNet 5. In: LREC, pp. 3679–3686 (2012)Google Scholar
  27. 27.
    Branavan, S.R.K., Kushman, N., Lei, T., Barzilay, R.: Learning high-level planning from text. In: 50th Annual Meeting of the Association for Computational Linguistics, pp. 126–135 (2012)Google Scholar
  28. 28.
    Li, J., Monroe, W., Ritter, A., Jurafsky, D.: Deep reinforcement learning for dialogue generation. arXiv Prepr. arXiv:1606.01541 (2016)

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lara J. Martin
    • 1
  • Brent Harrison
    • 1
  • Mark O. Riedl
    • 1
  1. 1.School of Interactive ComputingGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations