Exit 53: Physiological Data for Improving Non-player Character Interaction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10045)

Abstract

Non-player characters (NPCs) in video games have very little information about the player’s current state. The usage of physiological data in games has been very limited, mainly to adjustments in difficulty based on stress levels. We assess the usefulness of physiological signals for rapport in interactions with story characters in a small role-playing game, Exit53. Measurements of electrodermal activity and facial muscle tension serves as estimate of player affect which is used to adjust the behavior of NPCs in so far as their dialogue acknowledges the player’s emotion. An experimental evaluation of the developed system demonstrates the viability of the approach and qualitative data shows a clear difference in the perception of the system’s use of physiological information.

Keywords

Analyses and evaluation of systems Non-player character Physiological data Emotion 

References

  1. 1.
    Ambinder, M.: Biofeedback in gameplay: how valve measures physiology to enhance gaming experience. In: Game Developers Conference: Game Design Track, San Francisco, California (2011). http://www.valvesoftware.com/publications/2011/ValveBiofeedback-Ambinder.pdf
  2. 2.
    Bailey, C., Katchabaw, M.: An emergent framework for realistic psychosocial behavior in non-player characters. In: Future Play 2008 Proceedings of the 2008 Conference on Future Play: Research, Play, Share, Toronto, Ontario, Canada, pp. 17–24. ACM, New York (2008)Google Scholar
  3. 3.
    Bustamante, P.A., Celani, N.M.L., Perez, M.E., Montoya, O.L.Q.: Recognition and regionalization of emotions in the arousal-valence plane. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6042–6045. IEEE (2015)Google Scholar
  4. 4.
    Calvo, R.A., D’Mello, S.: Frontiers of affect-aware learning technologies. Intell. Syst. 27, 86–89 (2012)CrossRefGoogle Scholar
  5. 5.
    Chanel, G., Rebetez, C., Trancourt, M., Pun, T.: Emotion assessment from physiological signals for adaptation of game difficulty (2011)Google Scholar
  6. 6.
    Donikian, S., Petta, P.: A survey of research work in computer science and cognitive science dedicated to the modeling of reactive human behaviors. Comput. Animat. Virtual Worlds 22(5), 445–455 (2011). http://dx.doi.org/10.1002/cav.375 CrossRefGoogle Scholar
  7. 7.
    Gilroy, S., Porteous, J., Charles, F., Cavazza, M.: Exploring passive user interaction for adaptive narrative. In: IUI 2012 ACM International Conference on Intelligent User Interfaces, Lisbon, Portugal, pp. 119–128 (2012)Google Scholar
  8. 8.
    Gratch, J., Wang, N., Gerten, J., Fast, E., Duffy, R.: Creating rapport with virtual agents. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 125–138. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74997-4_12 CrossRefGoogle Scholar
  9. 9.
    Ingebretsen, M.: Toward more human video game characters. IEEE Intell. Syst. 23(4), 4–6 (2008)CrossRefGoogle Scholar
  10. 10.
    Kaptein, F., Broekens, J.: The affective storyteller: using character emotion to influence narrative generation. In: Brinkman, W.-P., Broekens, J., Heylen, D. (eds.) IVA 2015. LNCS (LNAI), vol. 9238, pp. 352–355. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21996-7_38 CrossRefGoogle Scholar
  11. 11.
    Kim, K.H., Bang, S.W., Kim, S.R.: Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42, 419–427 (2004)CrossRefGoogle Scholar
  12. 12.
    Lee, Y.S., Cho, S.B.: Dynamic quest plot generation using petri net planning. In: WASA 2012, Proceedings of the Workshop at SIGGRAPH Asia, Singapore, pp. 47–52. ACM, New York (2012)Google Scholar
  13. 13.
    Mateas, M., Stern, A.: Natural language understanding in façade: surface-text processing. In: Göbel, S., Spierling, U., Hoffmann, A., Iurgel, I., Schneider, O., Dechau, J., Feix, A. (eds.) TIDSE 2004. LNCS, vol. 3105, pp. 3–13. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27797-2_2 CrossRefGoogle Scholar
  14. 14.
    Matthes, D., Frenzel, P., Fuchs, M.: Synchronized measurement of peripheral physiological signals. Biomed. Eng. 57(SI–1 Track–F), 663 (2012)Google Scholar
  15. 15.
    Perry, T.S.: Leaving the uncanny valley behind. IEEE Spectr. 51(6), 48–53 (2014)CrossRefGoogle Scholar
  16. 16.
    Putten, A.M.V.D., Kramer, N., Gratch, J., Kang, S.H.: It doesn’t matter what you are! explaining social effects of agents and avatars. Comput. Hum. Behav. 26, 1641–1650 (2010)CrossRefGoogle Scholar
  17. 17.
    Rank, S., Lu, C.: PhysSigTK: enabling engagement experiments with physiological signals for game design. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), First International Workshop on ENgagement in HumAN Computer IntEraction (ENHANCE 2015), 21–24 September 2015, Xian, China, pp. 968–969. IEEE (2015)Google Scholar
  18. 18.
    Reynolds, E.: Nevermind: creating an entertaining biofeedback-enhanced game experience to train users in stress management. In: Proceedings of ACM SIGGRAPH 2013 Posters, Anaheim, California, article no. 77 (2013)Google Scholar
  19. 19.
    Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Drexel UniversityPhiladelphiaUSA

Personalised recommendations