A Formative Study Evaluating the Perception of Personality Traits for Planning-Based Narrative Generation

  • Julio César Bahamón
  • R. Michael Young
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10045)


The presence of interesting and compelling characters is an essential component of effective narrative. Well-developed characters have features that enable them to significantly enhance the believability and quality of a story. We present an experiment designed to gauge an audience’s perception of specific aspects of character personality traits expressed through the characters’ choices for action. The experiment served as a formative evaluation for work on the development of the Mask system for the automatic generation of narratives that express character traits through choice. Results from our study evaluate the hypothesis that the relationship between choices and the actions they lead to can be used in narrative to produce the perception of specific personality traits in an audience.


Intelligent narrative technologies track Artificial intelligence Planning Narrative generation Character personality 


  1. 1.
    André, E., Klesen, M., Gebhard, P., Allen, S., Rist, T.: Integrating models of personality and emotions into lifelike characters. In: Paiva, A. (ed.) IWAI 1999. LNCS (LNAI), vol. 1814, pp. 150–165. Springer, Heidelberg (2000). doi: 10.1007/10720296_11 CrossRefGoogle Scholar
  2. 2.
    Anonymous: In: Rudder, R.S., Puertolas, C., de Rodriguez, C.: The Life of Lazarillo of Tormes: His Fortunes and Misfortunes As Told by Himself, p. 245. Ungar, New York (1973)Google Scholar
  3. 3.
    Assanie, M.: Directable synthetic characters. In: Proceedings of the AAAI Spring Symposium on Artificial Intelligence and Interactive Entertainment, pp. 1–7 (2002)Google Scholar
  4. 4.
    Bahamón, J.C., Young, R.M.: CB-POCL: a choice-based algorithm for character personality in planning-based narrative generation. CMN 2013, 4–23 (2013)Google Scholar
  5. 5.
    Barthes, R., Duisit, L.: An introduction to the structural analysis of narrative. New Literary Hist. 6(2), 237–272 (1975)CrossRefGoogle Scholar
  6. 6.
    Bouchet, F., Sansonnet, J.P.: Influence of personality traits on the rational process of cognitive agents. In: Proceedings of WI - IAT, pp. 81–88. IEEE CS (2011)Google Scholar
  7. 7.
    Bulman, C.: Creative Writing: a Guide and Glossary to Fiction Writing. Polity, Cambridge (2007)Google Scholar
  8. 8.
    Chatman, S.B.: Story and Discourse: Narrative Structure in Fiction and Film. Cornell University Press, Ithaca (1978)Google Scholar
  9. 9.
    Doce, T., Dias, J., Prada, R., Paiva, A.: Creating individual agents through personality traits. In: Allbeck, J., Badler, N., Bickmore, T., Pelachaud, C., Safonova, A. (eds.) IVA 2010. LNCS (LNAI), vol. 6356, pp. 257–264. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15892-6_27 CrossRefGoogle Scholar
  10. 10.
    Funder, D.C., Sneed, C.D.: Behavioral manifestations of personality: an ecologicalapproach to judgmental accuracy. J. Pers. Soc. Psychol. 64(3), 479–490 (1993)CrossRefGoogle Scholar
  11. 11.
    Goldberg, L.R.: An alternative “description of personality”: the big-five factor structure. J. Pers. Soc. Psychol. 59(6), 1216 (1990)CrossRefGoogle Scholar
  12. 12.
    Gonzalez-Abril, L., Cuberos, F.J., Velasco, F., Ortega, J.A.: Ameva: an autonomous discretization algorithm. Expert Sys. Appl. 36(3), 5327–5332 (2009)CrossRefGoogle Scholar
  13. 13.
    Harris, J., Young, R.M.: Proactive mediation in plan-based narrative environments. IEEE TCIAIG 1(3), 233–244 (2009)Google Scholar
  14. 14.
    John, O.P., Donahue, E.M., Kentle, R.L.: The big five inventory - versions 4a and 54. UC Berkeley Institute of Personality and Social Research (1991)Google Scholar
  15. 15.
    John, O.P., Naumann, L.P., Soto, C.J.: Paradigm shift to the integrative big five trait taxonomy. Handb. Pers. Theory Res. 3, 114–158 (2008)Google Scholar
  16. 16.
    Laird, J.E., Jones, R.M.: Building advanced autonomous AI systems for large scale real time simulations. In: Computer Games Development Conference (1998)Google Scholar
  17. 17.
    LaPlante, A.: The Making of Story: a Norton Guide to Creative Writing. W.W. Norton, New York (2007)Google Scholar
  18. 18.
    Lazarus, R.S.: Progress on a cognitive-motivational-relational theory of emotion. Am. Psychol. 46(8), 819–834 (1991)CrossRefGoogle Scholar
  19. 19.
    Lebowitz, M.: Creating characters in a story-telling universe. Poetics 13(3), 171–194 (1984)CrossRefGoogle Scholar
  20. 20.
    Mairesse, F., Walker, M.: PERSONAGE: personality generation for dialogue. In: Annual Meeting-Association for Computational Linguistics, pp. 496–503 (2007)Google Scholar
  21. 21.
    McCrae, R.R., John, O.P.: An introduction to the five-factor model and its applications. J. Pers. 60(2), 175–215 (1992)CrossRefGoogle Scholar
  22. 22.
    Meehan, J.R.: Tale-spin, an interactive program that writes stories. In: Fifth International Joint Conference on Artificial Intelligence, pp. 91–98 (1977)Google Scholar
  23. 23.
    Mehl, M.R., Gosling, S.D., Pennebaker, J.W.: Personality in its natural habitat: manifestations and implicit folk theories of personality in daily life. J. Pers. Soc. Psychol. 90(5), 862–877 (2006)CrossRefGoogle Scholar
  24. 24.
    Riedl, M.O., Stern, A.: Failing believably: toward drama management with autonomous actors in interactive narratives. In: Göbel, S., Malkewitz, R., Iurgel, I. (eds.) TIDSE 2006. LNCS, vol. 4326, pp. 195–206. Springer, Heidelberg (2006). doi: 10.1007/11944577_21 CrossRefGoogle Scholar
  25. 25.
    Riedl, M.O., Young, R.M.: Character-focused narrative generation for execution in virtual worlds. In: Balet, O., Subsol, G., Torguet, P. (eds.) ICVS 2003. LNCS, vol. 2897, pp. 47–56. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-40014-1_6 CrossRefGoogle Scholar
  26. 26.
    Riedl, M.O., Young, R.M.: Narrative planning: balancing plot and character. J. Artif. Intell. Res. 39(1), 217–268 (2010)zbMATHGoogle Scholar
  27. 27.
    Tolkien, J.R.R.: The Hobbit. Houghton Mifflin, Boston (2001)Google Scholar
  28. 28.
    Twain, M.: The Adventures of Tom Sawyer (Tom Sawyer & Huckleberry Finn Series Book 1). kindle edn. Amazon Digital Services Inc. (2011)Google Scholar
  29. 29.
    Ware, S., Young, R., Harrison, B., Roberts, D.: A computational model of plan-based narrative conflict at the fabula level. IEEE TCIAIG 6(3), 271–288 (2014)Google Scholar
  30. 30.
    Ware, S.G., Young, R.M.: Glaive: a state-space narrative planner supporting intentionality and conflict. In: AIIDE, pp. 80–86 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Liquid Narrative Research GroupThe University of North Carolina at CharlotteCharlotteUSA
  2. 2.Liquid Narrative Research GroupUniversity of UtahSalt Lake CityUSA

Personalised recommendations