Skip to main content

Pharmacologically Active Plant Flavonols as Proton Transfer Based Multiparametric Fluorescence Probes Targeting Biomolecules: Perspectives and Prospects

  • Chapter
  • First Online:
Reviews in Fluorescence 2016

Part of the book series: Reviews in Fluorescence ((RFLU))

Abstract

Plant flavonols, and related compounds of the flavonoid group, are attracting enormous attention as novel therapeutic drugs for free radical mediated and other human diseases. Their high potency and low systemic toxicity make them viable alternatives to conventional therapeutics. On a different scenario, from the spectroscopic context, flavonols have emerged as one of the best known class of molecules exhibiting ultrafast excited state intramolecular proton transfer (ESIPT) leading to ‘two color’ fluorescence emissions which are exquisitely sensitive to environmental perturbations. Regarding therapeutic aspects of flavonols, the question of their physiological targets and the mode of interaction with such targets loom large This article presents perspectives, illustrating the potential usefulness of flavonols as their own fluorescent ‘reporters’ for noninvasive sensing of their interactions with representative biologically relevant targets encompassing carrier proteins, duplex and quadruplex DNA, and model and natural biomembranes. Representative and recent findings from our laboratory, exemplifying novel uses of flavonols as multiparametric fluorescence probes, are appropriately highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York Inc.

    Book  Google Scholar 

  2. Demchenko AP Introduction to fluorescence Sensing, 2nd ed. Springer 2015

    Google Scholar 

  3. Demchenko AP, Klymchenko AS, Pivovarenko VG, Ercelen S (2002) In: Krayenhof R, Visser AJWG, HC G (eds) Fluorescence spectroscopy, imaging and probes-new tools in chemical, physical and life sciences, Springer series on fluorescence methods and applications, vol 2. Springer, Heidelberg, Germany

    Google Scholar 

  4. Krasieva TB, Ehren J, O’Sullivan T, Tromberg BJ, Maher P (2015) Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy. Neurochem Int 89:243–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaudhuri S, Sengupta B, Taylor J, Pahari B, Sengupta PK (2013) Interactions of dietary flavonoids with proteins: insights from fluorescence spectroscopy and other related biophysical studies. Curr Drug Metab 14:491–503 and references cited therein

    Article  CAS  PubMed  Google Scholar 

  6. Protti S, Mezzetti A (2012) Any color you like. Excited state and ground state proton transfer in flavonols and applications. In: Albini A (ed) Photochemistry, Vol, vol 40, pp 295–322

    Chapter  Google Scholar 

  7. Sengupta PK, Banerjee A, Sengupta B 2006 Exploring the interactions of therapeutically active plant flavonoids with biological targets: Insights from fluorescence spectroscopy. In: Satoshi K (ed) Photoelectrochemistry and photobiology in the environment, energy & fuel, Research Signpost. Chap.5, 20–226, and references cited therein

    Google Scholar 

  8. Andersen OM, Markham KR (eds) (2006) Flavonoiids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  9. Rice-Evans CA, Diplock AT (1993) Current status of antioxidant therapy. Free Radic Biol Med 15:77–96

    Article  CAS  PubMed  Google Scholar 

  10. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Therapeut 96:67–202

    Article  CAS  Google Scholar 

  11. Pahari B, Sengupta B, Chakraborty S, Thomas B, McGowan D, Sengupta PK (2013) Contrasting binding of fisetin and daidzein in gamma-cyclodextrin nanocavity. J Photochem Photobiol B:Biology 118:33–41

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee A, Basu K, Sengupta PK (2008) Interaction of 7-hydroxyflavone with serum albumin: a spectroscopic study. J Photochem Photobiol B Biol 90:33–40

    Article  CAS  Google Scholar 

  13. Chaudhuri S, Pahari BP, Sengupta PK (2009) Ground- and excited-state proton transfer and antioxidant activity of 7-hydroxyflavone in model membranes: absorption and fluorescence spectroscopic studies. Biophys Chem 139:29–36

    Article  CAS  PubMed  Google Scholar 

  14. Rusznyák S, Szent-Görgyi A, Vitamin P (1936) flavonols as vitamins. Nature 138:27–27

    Article  Google Scholar 

  15. Sengupta PK, Kasha M (1979) Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68:382–385

    Article  CAS  Google Scholar 

  16. Demchenko AP, Heldt J, Waluk J, Chou P-T, Sengupta PK, Brizhnik L, del Valle JC (2014) From photochemistry and flowers to spectroscopy and music: the unique and diverse achievements of Michael Kasha. Angew Chem 53:14316–14324

    Article  CAS  Google Scholar 

  17. Kasha M (1986) Proton-transfer spectroscopy: perturbation of the tautomerization potential. J Chem Soc Faraday Trans 2 82:2379–2392

    Article  CAS  Google Scholar 

  18. Ameer-Beg S, Ormson SM, Brown RG, Matousek P, Towrie M, Nibbering ETJ, Foggi P, Neuwahl FVR (2001) Ultrafast Measurements of Excited State Intramolecular Proton Transfer (ESIPT) in room temperature solutions of 3-hydroxyflavone and derivatives. J Phys Chem A 105:3709–3718

    Article  CAS  Google Scholar 

  19. Bader AN, Ariese F, Gooijer C (2002) Proton transfer in 3-Hydroxyflavone studied by high-resolution 10 K laser-excited Shpol’skii spectroscopy. J Phys Chem A 106:2844–2849

    Article  CAS  Google Scholar 

  20. Demchenko AP, Tang K-C, Chou P-T (2013) Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem Soc Rev 42:1379–1408

    Article  CAS  PubMed  Google Scholar 

  21. Guharay J, Sengupta B, Sengupta PK (2001) Protein–flavonol interaction: fluorescence spectroscopic study. Proteins: structure, function. Genetics 43:75–81 and references cited therein

    CAS  Google Scholar 

  22. Pahari B, Chaudhuri S, Chakraborty S, Sengupta PK (2015) Ground and excited state proton transfer of the bioactive plant flavonol robinetin in a protein environment. J Phys Chem B 119:2533–2545

    Article  CAS  PubMed  Google Scholar 

  23. Sengupta B, Sengupta PK (2002) The interaction of quercetin with human serum albumin: a fluorescence spectroscopic study. Biochem Biophys Res Commun 299:400–403

    Article  CAS  PubMed  Google Scholar 

  24. Sengupta B, Sengupta PK (2003) Binding of quercetin with human serum albumin: a critical spectroscopic study. Biopolymers 72:427–434

    Article  CAS  PubMed  Google Scholar 

  25. Sengupta B, Pahari B, Blackmon L, Sengupta PK (2013) Prospect of bioflavoinoid fisetin as a quadruplex DNA ligand: a biophysical approach. PLoS One 8(6):e65383. doi:10.1371/journal.pone.0065383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pahari B, Chakraborty S, Chaudhuri S, Sengupta B, Sengupta PK (2012) Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: Insights from spectroscopic and quantum chemical studies. Chem Phys Lipids 165:488–496

    Article  CAS  PubMed  Google Scholar 

  27. Pahari B, Chakraborty S, Sengupta PK (2011) Encapsulation of 3-hydroxyflavone in gamma- cyclodextrin nanocavities: excited state proton transfer fluorescence and molecular docking studies. J Mol Struct 1006:483–488

    Article  CAS  Google Scholar 

  28. Chaudhuri S, Chakraborty S, Sengupta PK (2011) Probing the interactions of hemoglobin with antioxidant flavonoids via fluorescence spectroscopy and molecular modeling studies. Biophys Chem 154(2011):26–34

    Article  CAS  PubMed  Google Scholar 

  29. Chaudhuri S, Pahari BP, Sengupta B, Sengupta PK (2010) Binding of the bioflavonoid robinetin with model membranes and hemoglobin: Inhibition of lipid peroxidation and protein glycosylation. J Photochem Photobiol B:Biology 98:12–19

    Article  CAS  PubMed  Google Scholar 

  30. Sengupta PK, Chaudhuri S (2010) “Interactions of therapeutically active plant flavonols with biological targets: insights from fluorescence spectroscopic studies” (Invited article). J Indian Chem Soc 2010(87):213–220

    Google Scholar 

  31. Chaudhuri S, Basu K, Sengupta B, Banerjee A, Sengupta PK (2008) Ground and excited state proton transfer and antioxidant activity of 3-hydroxyflavone in egg yolk phosphatidylcholine liposomes: absorption and fluorescence spectroscopic studies. Luminescence 23:l397–l403

    Article  Google Scholar 

  32. Banerjee A, Basu K, Sengupta PK (2007) Effect of beta-cyclodextrin nanocavity confinement on the photophysics of robinetin. J Photochem Photobiol B Biol 89:88–97

    Article  CAS  Google Scholar 

  33. Chaudhuri S, Banerjee A, Basu K, Sengupta B, Sengupta PK (2007) Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. Int J Biol Macromol 2007(41):42–48

    Article  Google Scholar 

  34. Banerjee A, Sengupta PK (2006) Encapsulation of 3-hydroxyflavone and fisetin in beta-cyclodextrins: Excited state proton transfer fluorescence and molecular mechanics studies. Chem Phys Lett 424:379–386

    Article  CAS  Google Scholar 

  35. Sengupta B, Banerjee A, Sengupta PK (2005) Interactions of the plant flavonoid fisetin with macromolecular targets: insights from fluorescence spectroscopic studies. J Photochem Photobiol B Biol 80:79–86

    Article  CAS  Google Scholar 

  36. Sengupta B, Banerjee A, Sengupta PK (2004) Investigations on the binding and antioxidant properties of the plant flavonoid fisetin in model biomembranes. FEBS Lett 570(2004):77–81

    Article  CAS  PubMed  Google Scholar 

  37. Sengupta B, Banerjee A, Sengupta PK (2005) Interactions of the plant flavonoid fisetin with macromolecular targets: insights from fluorescence spectroscopic studies. J Photochem Photobiol B Biol 80:79–86

    Article  CAS  Google Scholar 

  38. Gutzeit HO, Henker Y, Kind B, Franz A (2004) Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence. Biochem Biophys Res Commun 318:490–495

    Article  CAS  PubMed  Google Scholar 

  39. Mohapatra M, Mishra AK (2011) Photophysical behavior of fisetin in dimyristoylphosphatidylcholine liposome membrane. J Phys Chem B 115:9962–9970

    Article  CAS  PubMed  Google Scholar 

  40. Shyamala T, Mishra AK (2004) Ground- and excited-state proton transfer reaction of 3-hydroxyflavone in dimyristoylphosphatidylcholine liposome membrane. Photochem Photobiol 80:309–315

    Article  CAS  PubMed  Google Scholar 

  41. Jana B, Senapati S, Ghosh D, Bose D, Chattopadhyay N (2012) Spectroscopic exploration of mode of binding of ctDNA with 3-hydroxyflavone: a contrast to the mode of binding with flavonoids having additional hydroxyl groups. J Phys Chem B 116:639–645

    Article  CAS  PubMed  Google Scholar 

  42. Sengupta B, MR S, DE D Jr, Harris K, RM W, Ward D, D’Asia G, Hampton C (2015) Excited state proton transfer of natural flavonoids and their chromophores in duplex and tetraplex DNAs. J Phys Chem B 119:2546–2556

    Article  CAS  PubMed  Google Scholar 

  43. Sytnik A, Gormin D, Kasha M (1994) Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes. Proc Natl Acad Sci U S A 91:11968–11972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Böhl M, Zupalla C, Takalov SV, Hoflack B, Gutzeit HO (2005) Identification of actin as quercetin-binding protein: an approach to identify target molecules for specific ligands. Anal Biochem 34:295–299

    Article  Google Scholar 

  45. Wybranowski T, Kruszewski S (2014) Optical spectroscopy study of the interaction between quercetin and human serum albumin. Acta Phys Pol A 125:A-57–A-60

    Article  Google Scholar 

  46. Mishra B, Barik A, Priyadarshini KI, Mohan H (2005) Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins. J Chem Sci 117:641–647

    Article  CAS  Google Scholar 

  47. Böhl M, Tietze S, Sokoll A, Madathil S, Pfennig F, Apostolakis J, Fahmy K, Gutzeit HO (2007) Flavonoids affect actin functions in cytoplasm and nucleus. Biophys J 93:2767–2780

    Article  PubMed  PubMed Central  Google Scholar 

  48. Voicescu M, Ionescu S, Nistor C (2017) Spectroscopic study of 3-hydroxyflavone-protein interactions in lipidic bi-layers immobilized on silver nanoparticles. Spectrochim Acta A 170:1–8 (in press)

    Article  CAS  Google Scholar 

  49. Voicescu M, Ionescu S (2015) 3-hydroxyflavone-Bovine serum albumin interaction in dextran medium. J Serb Chem Soc 80:517–528

    Article  CAS  Google Scholar 

  50. Voicescu M, Bandula R (2015) 3,6-dihydroxyflavone/ Bovine serum albumin interaction in cyclodextrin medium: absorption and emission monitoring. Spectrochim Acta A 138:628–636

    Article  CAS  Google Scholar 

  51. Latruffe N, Menzel M, Delmas D, Buchet R, Lancon A (2014) Compared binding properties between resveratrol and other polyphenols to plasmatic albumin: consequences for the health protecting effect of dietary plant microcomponents. Molecules 19:17066–17077

    Article  PubMed  Google Scholar 

  52. Falkovskaia E, Sengupta PK, Kasha M (1998) Photophysical induction of dual fluorescence of quercetin and related hydroxyflavones upon intermolecular H-bonding to solvent matrix. Chem Phys Lett 297:109–114

    Article  CAS  Google Scholar 

  53. Rolinski OJ, Martin A, Birch DJS (2008) Human serum albumin-flavonoid interactions monitored by means of tryptophan kinetics. Ann N Y Acad Sci 1130:314–319

    Article  CAS  PubMed  Google Scholar 

  54. Rolinski OJ, Martin A, Birch JSD (2007) Human serum albumin and quercetin interactions monitored by time-resolved fluorescence: evidence for enhanced discrete rotamer conformations. J Biomed Opt 12(3):034013 -1–034013-7

    Article  PubMed  Google Scholar 

  55. Dufour C, Dangles O (2005) Flavonoid –serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim Biophys Acta 172:164–173

    Article  Google Scholar 

  56. Singha Roy A, Dinda AK, Dasgupta S (2012) Study of the interaction between fisetin and human serum albumin: a biophysical approach. Protein Pept Lett 19:604–615

    Article  Google Scholar 

  57. Xiao J, Kai G (2012) A review of dietary polyphenol-plasma protein interactions: characterization, influence on the bioactivity, and structure-affinity relationship. Crit Rev Food Sci Nutr 52:85–101

    Article  CAS  PubMed  Google Scholar 

  58. Carter DC, He XM (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  PubMed  Google Scholar 

  59. S N, Balasubramanian S (2006) Quadruplex Nucleic acids. RSC, Cambridge, U.K.

    Google Scholar 

  60. Wang Y, Y H, Wu T, Zhou X, Shao Y (2015) Trigegered excited-state intramolecular proton transfer fluorescence for selective triplex DNA recognition. Anal Chem 87(23):11620–11624

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges all his students, post doctoral associates, and collaborators whose dedicated inputs over the years led to the development and successful growth and progress of the research highlighted in this article. He is thankful to the University Grants Commission (UGC), India for award of an Emeritus Fellowship, and to the Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta for facilities and invaluable support during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sengupta, P.K. (2017). Pharmacologically Active Plant Flavonols as Proton Transfer Based Multiparametric Fluorescence Probes Targeting Biomolecules: Perspectives and Prospects. In: Geddes, C. (eds) Reviews in Fluorescence 2016. Reviews in Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-319-48260-6_4

Download citation

Publish with us

Policies and ethics