Plant Growth-Promoting Bacteria: An Emerging Tool for Sustainable Crop Production Under Salt Stress

  • Shiv Ram Singh
  • Deeksha Joshi
  • Nidhi Tripathi
  • Pushpa SinghEmail author
  • Tapendra Kumar Srivastava


Salinization, recognized as one of the most devastating soil degradation threats on earth, has endangered the potential use of soil on almost an estimated land area of about 1 billion ha globally, representing about 7 % of earths continental extent of which about 20 % is cultivated land area. It is not only suppressing plant growth but is also disturbing the sustainability of beneficial microorganisms associated with the plant rhizosphere. The agricultural crops under salinity are known to exhibit a spectrum of responses ranging from crop yield declines to disturbance in ecological balance of the region. It is a major cause of land abandonment and aquifers for agricultural purposes. The impacts include poor agricultural productivity, low economic returns and soil erosions. PGPRs, which live in association with plant roots that alleviate salt stress for better growth and yield, through their own mechanisms for osmotolerance, osmolyte accumulation, asymbiotic N2 fixation, solubilization of mineral phosphate and other essential nutrients, enhanced NPK uptakes, production of plant hormones, ACC production, scavenging ROS, ISR and IST, are an important alternative to traditional agricultural techniques. The present chapter focuses on the advantages of PGPR-based mechanics through an engineered increase in tolerance to salinity and conceptual understanding of crop productivity as a complex product of plant genetics and microbial community function. The direct and indirect mechanics of PGPR through bio-fertilization, stimulation of root growth, rhizo-remediation and plant antibiosis and induction of systemic resistance, nutrient competition and niches that assists to sustain healthy growth of plants enhancing the crop productivity are also accentuated.


Salt stress Crop yield decline Plant growth-promoting bacteria Sustainable crop production 



We express our gratitude to Ms Nidhi Tripathi, SRF, ICAR-IISR, Lucknow, currently placed at Seoul National University, Seoul, South Korea, for providing prompt access to the latest publications as and when required, during the chapter writing. The assistance provided by the staff at Organic Chemistry Lab, ICAR-Indian Institute of Sugarcane Research, Lucknow, during the process is duly acknowledged.


  1. Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management. Food and Agriculture Organization of the United Nations, Soils Bull. 39, Rome, Italy.Google Scholar
  2. Aeron, A., Kumar, S., Pandey, P., & Maheshwari, D. K. (2011). Emerging role of plant growth promoting rhizobacteria in agrobiology. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystems (pp. 1–36). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  3. Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences, 9(1), 43–50.Google Scholar
  4. Alami, Y., Achouak, W., Marol, C., & Heulin, T. (2000). Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing rhizobium sp. strain isolated from sunflower roots. Applied and Environmental Microbiology, 66(8), 3393–3398.Google Scholar
  5. Amara, U., Khalid, R., & Hayat, R. (2015). Soil bacteria and phytohormones for sustainable crop production. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 87–103). Springer International.Google Scholar
  6. Antoun, H., & Prévost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–38). Netherlands: Springer.Google Scholar
  7. Arshad, M., & Frankenberger, W. T. (1998). Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Advances in Agronomy, 62, 46–152.Google Scholar
  8. Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.CrossRefGoogle Scholar
  9. Ashraf, M., Hasnain, S., Berge, O., & Mahmood, T. (2004). Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils, 40(3), 157–162.CrossRefGoogle Scholar
  10. Atzorn, R., Crozier, A., Wheeler, C. T., & Sandberg, G. (1988). Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 175, 532–538.CrossRefGoogle Scholar
  11. Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45(4), 405–13.CrossRefGoogle Scholar
  12. Barassi, C. A., Ayrault, G., Creus, C. M., Sueldo, R. J., & Sobrero, M. T. (2006). Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae, 109(1), 8–14.CrossRefGoogle Scholar
  13. Bashan, Y. (1999). Interactions of Azospirillum spp. in soils: A review. Biology and Fertility of Soils, 29(3), 246–256.CrossRefGoogle Scholar
  14. Blaylock, A. D. (1994). Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Laramie, Wyoming: Co-operative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of AgricultureGoogle Scholar
  15. Botella, M. A., Martinez, V., Pardines, J., & Cerdá, A. (1997). Salinity induced potassium deficiency in maize plants. Journal of Plant Physiology, 150(1–2), 200–205.CrossRefGoogle Scholar
  16. Burdman, S., Jurkevitch, E., Okon, Y., Subba-Rao, N. S., & Dommergues, Y. R. (2000). Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In N. S. Subba Rao & Y. R. Dommergues (Eds.), Microbial interactions in agriculture and forestry (Vol. 2, pp. 229–250). Enfield, NH: Science Publishers.Google Scholar
  17. Caravaca, F., Figueroa, D., Barea, J. M., Azcon-Aguilar, C., & Roldan, A. (2004). Effect of mycorrhizal inoculation on nutrient acquisition, gas ex-change, and nitrate reductase activity of two Mediterranean-autochthonous shrub species under drought stress. Journal of Plant Nutrition, 27(1), 57–74.CrossRefGoogle Scholar
  18. Casanovas, E. M., Barassi, C. A., Andrade, F. H., & Sueldo, R. J. (2003a). Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering. Cereal Research Communications, 31(3–4), 395–404.Google Scholar
  19. Casanovas, E. M., Barassi, C. A., Andrade, F. H., & Sueldo, R. J. (2003b). Azospirillum-inoculated maize plant responses to irrigation restraints imposed during flowering and consequent metabolic remodeling following over expression of a fungal oxalate decarboxylase. Plant Physiology, 162(1), 364–378.Google Scholar
  20. Chinnusamy, V., Zhu, J., & Zhu, J.-K. (2006). Gene regulation during cold acclimation in plants. Physiologia Plantarum, 126(1), 52–61.CrossRefGoogle Scholar
  21. Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.CrossRefGoogle Scholar
  22. Dardenelli, M. S., Fernandez de Cordoba, F. J., Rosario, E. M., Rodriguez, C. M. A., Soria, D.M.E., Gil, S. A. M., et al. (2008). Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under stress. Soil Biology and Biochemistry, 40, 2713–2721.Google Scholar
  23. Diby, P., Bharathkumar, S., & Sudha, N. (2005a). Osmotolerance in biocontrol strain of Pseudomonas pseudoalcaligenes MSP-538: A study using osmolyte, protein and gene expression profiling. Annals of Microbiology, 55(4), 243–247.Google Scholar
  24. Diby, P., Sarma, Y. R., Srinivasan, V., & Anandaraj, M. (2005b). Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under green-house cultivation. Annals of Microbiology, 55(3), 171–174.Google Scholar
  25. Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22, 107–149.CrossRefGoogle Scholar
  26. Dodd, I. C. (2009). Rhizosphere manipulations to maximize crop per drop during deficit irrigation. Journal of Experimental Botany, 60(9), 2454–2459.CrossRefGoogle Scholar
  27. Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Reviews in Microbiology, 36, 232–244.CrossRefGoogle Scholar
  28. Egamberdieva, D. (2012). Pseudomonas chlororaphis: A salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiologia Plantarum, 34(2), 75–56.CrossRefGoogle Scholar
  29. Elmer, W. H. (2003). Local and systemic effects of NaCl on root composition, rhizobacteria, and Fusarium crown and root rot of asparagus. Phytopathology, 93(2), 186–192.Google Scholar
  30. FAO (2008). Land and plant nutrition management service. htpp://
  31. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., et al. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–194.Google Scholar
  32. Flowers, T. J. (2004). Improving salt tolerance. Journal of Experimental Botany, 55, 307–319.CrossRefGoogle Scholar
  33. Fu, Q. L., Liu, C., Ding, N. F., Lin, Y. C., & Guo, B. (2010). Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 97(12), 1994–2000.CrossRefGoogle Scholar
  34. Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.CrossRefGoogle Scholar
  35. Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Science, 2012, 15.Google Scholar
  36. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39.CrossRefGoogle Scholar
  37. Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3), 329–339.CrossRefGoogle Scholar
  38. Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63–68.CrossRefGoogle Scholar
  39. Goswami, D., Dhandhukia, P., Patel, P., & Thakker, J. N. (2014). Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research, 169, 66–75.CrossRefGoogle Scholar
  40. Goswami, D., Thakker, J. N., & Dhandukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture. doi: 10.1080/23311932.2015.1127500.Google Scholar
  41. Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V., et al. (2011). Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 333–364). Berlin: Springer-Verlag.Google Scholar
  42. Grattan, S. R., & Grieve, C. M. (1994). Mineral nutrient acquisition and response by plants grown in saline environments. In M. Pessarakli (Ed.), Handbook of plant and crop stress (2nd ed., pp. 203–226). New York, NY: Marcel Dekker.Google Scholar
  43. Gutierrez-Manero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F., & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206–211.CrossRefGoogle Scholar
  44. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.CrossRefGoogle Scholar
  45. Hamaoui, B., Abbadi, J. M., Burdman, S., Rashid, A., Sarig, S., & Okon Y. (2001). Effects of inoculation with Azospirillum brasilense on chik peas (Cicer arietnum) faba beans (Vicia faba) under different growth conditions Agronomie, 21, 553–560.Google Scholar
  46. Hamdia, M. B. E., Shaddad, M. A. K., & Doaa, M. M. (2004). Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation, 44(2), 165–174.CrossRefGoogle Scholar
  47. Hammer, P. E., Hill, D. S., Lam, S. T., Van Pée, K. H., & Ligon, J. M. (1997). Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Applied and Environmental Microbiology, 63, 2147–2154.Google Scholar
  48. Han, H. S., & Lee, K. D. (2005). Physiological responses of soybean inoculation of Bradyrhizobium japonicum PGPR in saline soil conditions. Research Journal of Agricultural Biological Sciences, 1(3), 216–221.Google Scholar
  49. Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science, 5, 523–530.CrossRefGoogle Scholar
  50. Hichem, H., Naceur, E. A., & Mounir, D. (2009). Effects of salt stress on photosynthesis, PSII photochemistry and thermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica, 47(4), 517–526.CrossRefGoogle Scholar
  51. Hiltner, L. (1904). About recent experiences and problems the field of soil bacteriology with special consideration of green manure and fallow. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 98, 59–78.Google Scholar
  52. Howell, T. A. (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal, 93(2), 281–289.CrossRefGoogle Scholar
  53. Hu, Y., & Schmidhalter, U. (2002). Limitation of salt stress to plant growth. In B. Hock, & C. F. Elstner (Eds.), Plant toxicology (pp. 91–224). New York, NY: Marcel Dekker Inc.Google Scholar
  54. Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt stress. Critical Review of Plant Science, 30(5), 435–458.CrossRefGoogle Scholar
  55. Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy Seyed, A. M. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science, 5(6), 726–734.Google Scholar
  56. Jha, C. K., Aeron, A., Patel, B. V., Maheshwari, D. K., & Saraf, M. (2011). Enterobacter: Role in plant growth promotion. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 159–182). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  57. Jha, C. K., Patel, B., & Saraf, M. (2012). Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World Journal of Microbiology and Biotechnology, 28, 891–899.CrossRefGoogle Scholar
  58. Jha, C. K., & Saraf, M. (2015). Plant growth promoting rhizobacteria (PGPR): A review. Journal of Agricultural Research and Development, 5, 108–119.Google Scholar
  59. Johnson, H. E., Broadhurst, D., Goodacre, R., & Smith, A. R. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62(6), 919–928.CrossRefGoogle Scholar
  60. Kaymak, H. C., Guvenc, I., Yarali, F., & Donmez, M. F. (2009). The effects of biopriming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish Journal of Agriculture, 33(2), 173–179.Google Scholar
  61. Kloepper, J. W., & Schroth, M. N. (1978.) Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, 2, 879–882.Google Scholar
  62. Kohler, J., Hernandez, J. A., Caravaca, F., & Roldan, A. (2009). Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 65(2–3), 245–252.CrossRefGoogle Scholar
  63. Ladeiro, B. (2012). Saline agriculture in the 21st century : Using salt contaminated resources to cope food requirements. Journal of Botany. doi: 10.1155/201/310705.Google Scholar
  64. Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., et al. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.Google Scholar
  65. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.CrossRefGoogle Scholar
  66. MacMillan, J. (2001). Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant Growth Regulation, 20, 387–442.CrossRefGoogle Scholar
  67. Maheshwari, D. K., Dheeman, S., & Agarwal, M. (2015). Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 159–182). Springer International.Google Scholar
  68. Makela, A., Landsberg, J., Ek, A. R., Burk, T. E., Ter-Mikaelian, M., & Agren, G. I. (2000). Process-based models for forest ecosystem management: Current state of the art and challenges for practical implementation. Tree Physiology, 20(5–6), 289–298.CrossRefGoogle Scholar
  69. Marcelis, L. F. M., & Van Hooijdonk, J. (1999). Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil, 215(1), 57–64.CrossRefGoogle Scholar
  70. Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572.CrossRefGoogle Scholar
  71. Mittova, V., Tal, M., Volokita, M., & Guy, M. (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum, 115(3), 393–400.CrossRefGoogle Scholar
  72. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environment, 25, 239–250.CrossRefGoogle Scholar
  73. Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant and Soil, 253, 201–218.CrossRefGoogle Scholar
  74. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–81.CrossRefGoogle Scholar
  75. Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology, 53(10), 1141–1149.CrossRefGoogle Scholar
  76. Nadeem, S. M., Zahir, Z. A., Naveed, M., & Nawaz, S. (2013). Mitigation of salinity- induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Annals of Microbiology, 63(1), 225–232.CrossRefGoogle Scholar
  77. Nautiyal, C. S., Govindarajan, R., Lavania, M., & Pushpangadan, P. (2008). Novel mechanism of modulating natural antioxidants in functional foods: Involvement of plant growth promoting rhizobacteria NRRLB-30488. Journal of Agricultural Food Chemistry, 56(12), 4474–4481.CrossRefGoogle Scholar
  78. Neiendam-Nielsen, M., & Sørensen, J. (1999). Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiology Ecology, 30, 217–227.CrossRefGoogle Scholar
  79. Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 44, 806–811.CrossRefGoogle Scholar
  80. Oberson, A., Frossard, E., Bühlmann, C., Mayer, J., Mäder, P., & Lüscher, A. (2013). Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant and Soil, 371, 237–255.CrossRefGoogle Scholar
  81. Ondrasek, G., Rengel, Z., Romic, D., & Savic, R. (2010). Environmental salinization processes in agro-ecosystem of neretva river estuary. Novenytermeles, 59, 223–226.Google Scholar
  82. Ortíz-Castro, R., Valencia-Cantero, E., & López-Bucio, J. (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling and Behavior, 3, 263–265.CrossRefGoogle Scholar
  83. Patel, B. B., & Dave, R. S. (2011). Studies on infiltration of saline –alkali soils of several parts of Mehsana and Patan Districts of North Gujarat. Journal of Applied Technolgy Environment and Sanitation, 1(1), 87–92.Google Scholar
  84. Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220.CrossRefGoogle Scholar
  85. Paul, D., & Nair, S. (2008). Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology, 48(5), 378–384.CrossRefGoogle Scholar
  86. Paul, D., & Sarma, Y. R. (2006). Plant growth promoting rhizobacteria [PGPR] mediated root proliferation in Black pepper (Piper nigrum L.) as evidenced through GS Root software. Archives of Phytopathology Plant Protection, 39(4), 311–314.CrossRefGoogle Scholar
  87. Payne, S. M. (1994). Detection, isolation, and characterization of siderophores. Methods in Enzymology, 235, 329–344.CrossRefGoogle Scholar
  88. Peng, Y. L., Gao, Z. W., Gao, Y., Liu, G. F., Sheng, L. X., & Wang, D. L. (2008). Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. Journal of Integrated Plant Biology, 50(1), 29–39.CrossRefGoogle Scholar
  89. Ramos-Solano, B., Barriuso, J., & Gutiérrez-Mañero, F. J. (2008). Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In I. Ahmad, J. Pichtel, & S. Hayat (Eds.), Plant–bacteria interactions: Strategies and techniques to promote plant growth (pp. 41–54). Weinheim: Wiley VCH.CrossRefGoogle Scholar
  90. Rangarajan, S., Saleena, L. M., Vasudevan, P., & Nair, S. (2003). Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant and Soil, 251(1), 73–82.CrossRefGoogle Scholar
  91. Rashid, N., Imanaka, H., Fukui, T., Atomi, H., & Imanaka, T. (2004). Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. Journal of Bacteriology, 186(13), 4185–4191.CrossRefGoogle Scholar
  92. Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimantal Botany, 57, 1017–1023.CrossRefGoogle Scholar
  93. Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Applied and Environmental Microbiology, 58(4), 1284–1291.Google Scholar
  94. Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Botany, 59, 1109–1114.CrossRefGoogle Scholar
  95. Rojas-Tapias, D., Moreno-Galvan, A., Pardo-Diaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272.CrossRefGoogle Scholar
  96. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017–1026.CrossRefGoogle Scholar
  97. Sadfi, N., Cherif, M., Fliss, I., Boudabbous, A., & Antoun, H. (2001). Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. Journal of Plant Pathology, 83, 101–117.Google Scholar
  98. Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Indian Microbiology and Biology, 34(10), 635–648.CrossRefGoogle Scholar
  99. Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62(1), 21–30.CrossRefGoogle Scholar
  100. Sarvanakumar, D., & Samiyappan, R. (2007). ACC Deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology, 102, 1283–1292.CrossRefGoogle Scholar
  101. Sharpley, A. N., Meisinger, J. J., Power, J. F., & Suarez, D. L. (1992). Root extraction of nutrients associated with long-term soil management. In J. L. Hatfiedl, & B. A. Stewart (Eds.), Limitations to plant growth. Advances in Soil Science, 19, pp. 151–217.Google Scholar
  102. Shen, X., Hu, H., Peng, H., Wang, W., & Zhang, X. (2013). Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics, 14, 271.CrossRefGoogle Scholar
  103. Shukla, P. S., Agarwal, P. K., & Jha, B. (2012). Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. Journal of Plant Growth Regulation, 31(2), 195–206.CrossRefGoogle Scholar
  104. Siddikee, M. A., Chauhan, P. S., Anandham, R., Han, G. H., & Sa, T. (2010). Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. Journal of Microbiology and Biotechnology, 20(11), 1577–84.CrossRefGoogle Scholar
  105. Singh, K. N., & Chatrath, R. (2001.) Salinity tolerance. In M. P. Reynolds, J. I. O. Monasterio, & A. McNab (Eds.), Application of physiology in wheat breeding (pp. 101–110). Mexico, DF: CIMMYT.Google Scholar
  106. Son, H. J., Park, G. T., Cha, M. S., & Heo, M. S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97(2), 204–210.CrossRefGoogle Scholar
  107. Spychalla, J. P., & Desborough, S. L. (1990). Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiology, 94(3), 1214–1228.CrossRefGoogle Scholar
  108. Stacey, G., Burris, R. H., & Evans, H. J. (Eds.). (1992). Biological nitrogen fixation. Berlin: Springer Science & Business Media.Google Scholar
  109. Tabur, S., & Demir, K. (2010). Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regulators, 60, 99–104.CrossRefGoogle Scholar
  110. Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–507.CrossRefGoogle Scholar
  111. Triky-Dotan, S., Yermiyahu, U., Katan, J., & Gamliel, A. (2005). Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology, 95(12), 1438–1444.CrossRefGoogle Scholar
  112. Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14(4), 605–611.CrossRefGoogle Scholar
  113. Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21(2), 214–222.CrossRefGoogle Scholar
  114. van Loon, L. C., Bakker, P. A., & Pieterse, C. M. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36(1), 453–483.CrossRefGoogle Scholar
  115. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizer. Plant and Soil, 255, 571–586.CrossRefGoogle Scholar
  116. Wong, W. S., Tan, S. N., Ge, L., Chen, X., & Yong, J. W. H. (2015). The importance of phytohormones and microbes in biofertilizers. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 105–158). Springer International.Google Scholar
  117. Yao, L. X., Wu, Z. S., Zheng, Y. Y., Kaleem, I., & Li, C. (2010). Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46(1), 49–54.CrossRefGoogle Scholar
  118. Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., & Pare, P. W. (2008). Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant Microbe Interactions, 21(6), 737–744.CrossRefGoogle Scholar
  119. Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Shiv Ram Singh
    • 1
  • Deeksha Joshi
    • 1
  • Nidhi Tripathi
    • 2
  • Pushpa Singh
    • 1
    Email author
  • Tapendra Kumar Srivastava
    • 1
  1. 1.ICAR-Indian Institute of Sugarcane ResearchLucknowIndia
  2. 2.Division of Plant Physiology and BiochemistryICAR-Indian Institute of Sugarcane ResearchLucknowIndia

Personalised recommendations