Advertisement

Microbial Approach for Bioremediation of Saline and Sodic Soils

  • Sanjay AroraEmail author
  • Meghna Vanza
Chapter

Abstract

The salt-affected soils are dominated by many types of halophilic and halotolerant microorganisms, spread over a large number of phylogenetic groups. The biotic approach ‘plant-microbe interaction’ to overcome salinity problems has recently received a considerable attention throughout the world. The halophilic microbes have potential for bioremediation of salt-dominant soils. Halophilic bacteria having plant growth promotion potential were isolated that could tolerate up to 15 % NaCl in liquid media. Soil inoculation showed their sustenance and activity up to electrical conductivity (EC) of 8 dS/m. Also, plant growth-promoting endophytic halophiles from leaves of halophyte plants have potential to remediate salt-affected soils. The efficient plant growth-promoting isolates were inoculated in seeds of maize and wheat to mitigate salt stress. There was 10–12 % increase in yield attributes and yield of wheat at 6 % NaCl irrigations in soil as compared to 2 % NaCl irrigations in experiments.

Keywords

Halophiles Bacteria Salt-affected soils ACC deaminase Hypersaline Rhizosphere 

References

  1. Aliasgharzadeh, N., Saleh Rastin, N., Towfighi, H., & Alizadeh, A. (2001). Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 11, 119–122.CrossRefGoogle Scholar
  2. Amoozegar, M. A., Malekzadeh, F., Malik, K. A., Schumann, P., & Sproer, C. (2003). Halobacillus karajensis sp. nov., a novel moderate halophile. International Journal of Systematic and Evolutionary Microbiology, 53, 1059–1063.CrossRefGoogle Scholar
  3. Arahal, D. R., & Ventosa, A. (2002). Moderately halophilic and halotolerant species of Bacillus and related genera. In R. Berkeley, M. Heyndrickx, N. Logan, & P. De Vos (Eds.), Applications and systematics of Bacillus and relatives (pp. 83–99). Oxford: Blackwell.CrossRefGoogle Scholar
  4. Arora, S., Patel, P., Vanza, M., & Rao, G. G. (2014a). Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. African Journal of Microbiology Research, 8(17), 1779–1788.CrossRefGoogle Scholar
  5. Arora, S., Vanza, M., Mehta, R., Bhuva, C., & Patel, P. (2014b). Halophilic microbes for bio-remediation of salt affected soils. African Journal of Microbiology Research, 8(33), 3070–3078.CrossRefGoogle Scholar
  6. Bouchotroch, S., Quesada, E., del Moral, A., Llamas, I., & Bejar, V. (2001). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 51, 1625–1632.Google Scholar
  7. Cui, X. L., Mao, P. H., Zeng, M., Li, W. J., Zhang, L. P., Xu, L. H., et al. (2001). Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. International Journal of Systematic and Evolutionary Microbiology, 51, 357–363.Google Scholar
  8. DasSarma, S., & Arora, P. (2001). Halophiles. Encyclopedia of Life Sciences. doi: 10.1038/npg.els.0004356.
  9. Dundas, I. (1998). Was the environment for primordial life hypersaline? Extremophiles, 2, 375–377.CrossRefGoogle Scholar
  10. Echigo, A., Hino, M., Fukushima, T., Mizuki, T., Kamekura, M., & Usami, R. (2005). Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm). Saline Systems, 1, 8.Google Scholar
  11. Garabito, M. J., Marquez, M. C., & Ventosa, A. (1998). Halotolerant Bacillus diversity in hypersaline environments. Canadian Journal of Microbiology, 44, 95–102.CrossRefGoogle Scholar
  12. Garcia, M. T., Mellado, E., Ostos, J. C., & Ventosa, A. (2004). Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. International Journal of Systematic and Evolutionary Microbiology, 54, 1723–1728.Google Scholar
  13. Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P., et al. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon- degrading marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 42, 568–576.Google Scholar
  14. Hao, M. V., Kocur, M., & Komagata, K. (1984). Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. Journal of General and Applied Microbiology, 30, 449–459.CrossRefGoogle Scholar
  15. Heyrman, J., Logan, N. A., Busse, H. J., Balcaen, A., Lebbe, L., Rodriguez-Diaz, M., et al. (2003). Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb.nov., and emended description of the genus Virgibacillus. International Journal of Systematic and Evolutionary Microbiology, 53, 501–511.Google Scholar
  16. Jeon, C. O., Lim, J. M., Lee, J. C., Lee, G. S., Lee, J. M., Xu, L. H., et al. (2005). Lentibacillus salarius sp. nov., isolated from saline sediment in China, and emended description of the genus Lentibacillus. International Journal of Systematic and Evolutionary Microbiology, 55, 1339–1343.Google Scholar
  17. Juniper, S., & Abbott, L. (1993). Vesicular and arbuscular mycorrhizae and soil salinity. Mycorrhizae, 4, 45–57.CrossRefGoogle Scholar
  18. Kamekura, M., & Seno, Y. (1990). A halophilic extracellular protease from a halophilic archaebacterium strain 172 P1. Biochemistry and Cell Biology, 68(1), 352–359.Google Scholar
  19. Khan, A. G., & Belik, M. (1994). Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In A. Varma & B. Hock (Eds.), Mycorrhiza: function, molecular biology and biotechnology. Heidelberg, Germany: Springer.Google Scholar
  20. Kushner, D. J. (1993). Growth and nutrition of halophilic bacteria. In R. H. Vreeland & L. I. Hochstein (Eds.). The biology of halophilic bacteria (pp. 87–89). Boca Raton, FL: CRC Press,Google Scholar
  21. Landwehr, M., Hilderbrandt, U., & Wilde, P. (2002). The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza, 12, 199–211.CrossRefGoogle Scholar
  22. Lee, J. S., Lim, J. M., Lee, K. C., Lee, J. C., Park, Y. H., & Kim, C. J. (2006). Virgibacillus koreensis sp. nov., a novel bacterium from salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. International Journal of Systematic and Evolutionary Microbiology, 56, 251–257.CrossRefGoogle Scholar
  23. Li, W. J., Kroppenstedt, R. M., Wang, D., Tang, S. K., Lee, J. C., Park, D. J., et al. (2006). Five novel species of the genus Nocardiopsis isolated from hypersaline soils and emended description of Nocardiopsis salina. International Journal of Systematic and Evolutionary Microbiology, 56, 1089–1096.Google Scholar
  24. Li, W. J., Schumann, P., Zhang, Y. Q., Chen, G. Z., Tian, X. P., Xu, L. H., et al. (2005). Marinococcus halotolerans sp. nov., isolated from Qinghai, north-west China. International Journal of Systematic and Evolutionary Microbiology, 55, 1801–1804.Google Scholar
  25. Martinez-Canovas, M. J., Bejar, V., Martinez-Checa, F., & Quesada, E. (2004). Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. International Journal of Systematic and Evolutionary Microbiology, 54, 1329–1332.Google Scholar
  26. Meyer, J. (1976). Nocardiopsis dassonvillei, a new genus of the order Actinomycetales. International Journal of Systematic Bacteriology, 26, 487–493.CrossRefGoogle Scholar
  27. Ojala, J. C., Jarrell, W. M., Menge, J. A., & Johnson, E. L. V. (1983). Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomy Journal, 75, 255–259.CrossRefGoogle Scholar
  28. Olivera, N., Sineriz, F., & Breccia, J. D. (2005). Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. International Journal of Systematic and Evolutionary Microbiology, 55, 443–447.CrossRefGoogle Scholar
  29. Oren, A. (1999). Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews, 63, 334–348.Google Scholar
  30. Oren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28, 56–63.CrossRefGoogle Scholar
  31. Pond, E. C., Menge, J. A., & Jarrell, W. M. (1984). Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline sites. Mycologia, 76, 74–84.CrossRefGoogle Scholar
  32. Porras-Soriano, A., Soriano-Martin, M. L., Porras-Piedra, A., & Azcon, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology. doi: 10.1016/j.jplph.2009.02.010.Google Scholar
  33. Quillaguaman, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T., & Delgado, O. (2004). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. International Journal of Systematic and Evolutionary Microbiology, 54, 721–725.CrossRefGoogle Scholar
  34. Rodriguez-Valera, F. (1988). Characteristics and microbial ecology of hypersaline environments. In F. Rodriguez-Valera (Ed.), Halophilic bacteria (Vol. 1, pp. 3–30). Boca Raton, FL: CRC Press.Google Scholar
  35. Rodriguez-Valera, F. (1993). The biology of halophilic bacteria. In R. H. Vreeland & L. Hochstein (Eds.), Introduction to saline environments (pp. 1–23). Boca Raton, FL: CRC Press.Google Scholar
  36. Shivanand, P., & Mugeraya, G. (2011). Halophilic bacteria and their compatible solutes – osmoregulation and potential applications. Current Science, 100(10), 1516–1521.Google Scholar
  37. Spring, S., Ludwig, W., Marquez, M. C., Ventosa, A., & Schleifer, K. H. (1996). Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. International Journal of Systematic Bacteriology, 46, 492–496.CrossRefGoogle Scholar
  38. Stahl, P. O., & Williams, S. E. (1986). Oil shale process water affects activity of vesicular-arbuscular fungi and Rhizobium four years after application to soil. Soil Biology and Biochemistry, 18, 451–455.CrossRefGoogle Scholar
  39. Trivedi, R., & Arora, S. (2013). Characterization of acid and salt tolerant Rhizobium sp. isolated from saline soils of Gujarat. International Research Journal of Chemistry, 3(3), 8–13.Google Scholar
  40. Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62(2), 504–544.Google Scholar
  41. Ventosa, A., Ramos-Cormenzana, A., & Kocur, M. (1983). Moderately halophilic gram-positive cocci from hypersaline environments. Systematic and Applied Microbiology, 4, 564–570.Google Scholar
  42. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., & Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science, 217, 1214–1216.CrossRefGoogle Scholar
  43. Yoon, J. H., Kang, K. H., & Park, Y. H. (2002). Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. International Journal of Systematic and Evolutionary Microbiology, 52, 2043–2048.Google Scholar
  44. Yoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K., & Park, Y. H. (2003). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the yellow sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 53, 1297–1303.CrossRefGoogle Scholar
  45. Yumoto, I., Hirota, K., Goto, T., Nodasaka, Y., & Nakajima, K. (2005). Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. International Journal of Systematic and Evolutionary Microbiology, 55, 907–911.CrossRefGoogle Scholar
  46. Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K., et al. (2003). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and mhydroxybenzoate. International Journal of Systematic and Evolutionary Microbiology, 53, 1531–1536.Google Scholar
  47. Zhang, Z., Wang, Y., & Ruan, J. (1998). Reclassification of Thermomonospora and Microtetraspora. International Journal of Systematic Bacteriology, 48, 411–422.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ICAR-Central Soil Salinity Research Institute, Regional Research StationLucknowIndia
  2. 2.V.N. South Gujarat UniversitySuratIndia

Personalised recommendations