Bioremediation of Heavy Metals by Microbes

  • Madhu ChoudharyEmail author
  • Raman Kumar
  • Ashim Datta
  • Vibha Nehra
  • Neelam Garg


Heavy metals are naturally present in the soil, but higher concentration of these elements is harmful to plants, animals, and humans. Prolonged exposure of such heavy metals can have deleterious health effects on human life. Bioremediation of these heavy metals like As, Cd, Cr, Hg, Ni, Hg, and Zn can be done by either plants or microorganisms or by the combination of two. In this chapter emphasis has been given to its microbial methods. There are certain disadvantages associated with physicochemical methods of remediation; thus bioremediation is arising as alternative to these methods. It is an environment friendly approach because it is achieved via natural processes. In this chapter efforts have been made to give brief introduction of available physicochemical and biological methods of heavy metal remediation. Bioremediation by bacteria and fungi is discussed in detail.


Heavy metal Remediation Microorganisms Bio-augmentation Biopiling 


  1. Achal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601–1605.CrossRefGoogle Scholar
  2. Achour, A. R., Bauda, P., & Billard, P. (2007). Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Research in Microbiology, 158(2), 128–137.CrossRefGoogle Scholar
  3. Achour-Rokbani, A., Cordi, A., Poupin, P., Bauda, P., & Billard, P. (2010). Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33. Applied and Environmental Microbiology, 76(3), 948–955.CrossRefGoogle Scholar
  4. Ahemad, M., & Khan, M. S. (2011). Pesticide interactions with soil microflora: Importance in bioremediation. In Microbes and Microbial Technology (pp. 393–413). New York: Springer.Google Scholar
  5. Ahmady-Asbchin, S., Safari, M., & Tabaraki, R. (2015). Biosorption of Zn (II) by Pseudomonas aeruginosa isolated from a site contaminated with petroleum. Desalination and Water Treatment, 54(12), 3372–3379.CrossRefGoogle Scholar
  6. Alexander, M. (1999). Biodegradation and bioremediation (p. 453). Houston, TX: Gulf Professional Publishing.Google Scholar
  7. Anton, A., Große, C., Reißmann, J., Pribyl, T., & Nies, D. H. (1999). CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. Journal of Bacteriology, 181(22), 6876–6881.Google Scholar
  8. Ariff, A. B., Mel, M., Hasan, M. A., & Karim, M. I. A. (1999). The kinetics and mechanism of lead (II) biosorption by powderized Rhizopus oligosporus. World Journal of Microbiology and Biotechnology, 15(2), 291–298.CrossRefGoogle Scholar
  9. Baldwin, B. R., Peacock, A. D., Park, M., Ogles, D. M., Istok, J. D., McKinley, J. P., et al. (2008). Multilevel samplers as microcosms to assess microbial response to biostimulation. Ground Water, 46(2), 295–304.CrossRefGoogle Scholar
  10. Banerjee, G., Pandey, S., Ray, A. K., & Kumar, R. (2015). Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, Flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water, Air, & Soil Pollution, 226(4), 1–9.CrossRefGoogle Scholar
  11. Beolchini, F., Pagnanelli, F., Toro, L., & Veglio, F. (2006). Ionic strength effect on copper biosorption by Sphaerotilus natans: Equilibrium study and dynamic modelling in membrane reactor. Water Research, 40(1), 144–152.CrossRefGoogle Scholar
  12. Bestawy, E. E., Helmy, S., Hussien, H., Fahmy, M., & Amer, R. (2013). Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Applied Water Science, 3(1), 181–192.CrossRefGoogle Scholar
  13. Blencowe, D. K., & Morby, A. P. (2003). Zn(II) metabolism in prokaryotes. FEMS Microbiology Reviews, 27, 291–311. doi: 10.1016/S0168-6445(03)00041-X.CrossRefGoogle Scholar
  14. Blindauer, C. A. (2011). Bacterial metallothioneins: past, present, and questions for the future. Journal of Biological Inorganic Chemistry, 16(7), 1011–1024.CrossRefGoogle Scholar
  15. Boricha, H., & Fulekar, M. H. (2009). Pseudomonas plecoglossicida as a novel organism for the bioremediation of cypermethrin. Biology and Medicine, 1(4), 1–10.Google Scholar
  16. Borremans, B., Hobman, J. L., Provoost, A., Brown, N. L., & van Der Lelie, D. (2001). Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. Journal of Bacteriology, 183(19), 5651–5658.CrossRefGoogle Scholar
  17. Bossé, J. T., Gilmour, H. D., & MacInnes, J. I. (2001). Novel genes affecting urease activity in Actinobacillus pleuropneumoniae. Journal of Bacteriology, 183(4), 1242–1247.CrossRefGoogle Scholar
  18. Braud, A., Geoffroy, V., Hoegy, F., Mislin, G. L., & Schalk, I. J. (2010). Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environmental Microbiology Reports, 2(3), 419–425.CrossRefGoogle Scholar
  19. Cavet, J. S., Borrelly, G. P., & Robinson, N. J. (2003). Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiology Reviews, 27(2-3), 165–181.CrossRefGoogle Scholar
  20. Chauhan, N. S., Ranjan, R., Purohit, H. J., Kalia, V. C., & Sharma, R. (2009). Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiology Ecology, 67(1), 130–139.CrossRefGoogle Scholar
  21. Choi, S. B., & Yun, Y. S. (2004). Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnology Letters, 26(4), 331–336.CrossRefGoogle Scholar
  22. Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146(1), 270–277.CrossRefGoogle Scholar
  23. Cooksey, D. A. (1993). Copper uptake and resistance in bacteria. Molecular Microbiology, 7(1), 1–5.CrossRefGoogle Scholar
  24. Cooksey, D. A. (1994). Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiology Reviews, 14(4), 381–386.CrossRefGoogle Scholar
  25. Crusberg, T. C., & Mark, S. S. (2000). Heavy metal remediation of wastewaters by microbial biotraps. In Bioremediation (pp. 123–137). Netherlands: Springer.Google Scholar
  26. Diels, L., Van der Lelie, N., & Bastiaens, L. (2002). New developments in treatment of heavy metal contaminated soils. Reviews in Environmental Science and Biotechnology, 1(1), 75–82.CrossRefGoogle Scholar
  27. Fathima, A., Aravindhan, R., Rao, J. R., & Nair, B. U. (2015). Biomass of Termitomyces clypeatus for chromium (III) removal from chrome tanning wastewater. Clean Technologies and Environmental Policy, 17(2), 541–547.CrossRefGoogle Scholar
  28. Fatta-Kassinos, D., Kalavrouziotis, I. K., Koukoulakis, P. H., & Vasquez, M. I. (2011). The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Science of the Total Environment, 409(19), 3555–3563.CrossRefGoogle Scholar
  29. Fazli, M. M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: Their tolerance and removal potential. Journal of Environmental Health Science and Engineering, 13(1), 1.CrossRefGoogle Scholar
  30. Forster, C. F., & Wase, D. A. J. (1997). Biosorption: The future. In J. Wase & C. Forster (Eds.), Biosorbents for metal ions (pp. 221–227). London: Taylor & Francis Ltd.Google Scholar
  31. Fourest, E., & Roux, J. C. (1992). Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH. Applied Microbiology and Biotechnology, 37(3), 399–403.CrossRefGoogle Scholar
  32. Franke, S., Grass, G., Rensing, C., & Nies, D. H. (2003). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Journal of Bacteriology, 185(13), 3804–3812.CrossRefGoogle Scholar
  33. Gabriel, J., Vosahlo, J., & Baldrian, P. (1996). Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnology Techniques, 10(5), 345–348.CrossRefGoogle Scholar
  34. Gadd, G. M. (1992). Heavy metal pollutants: Environmental and biotechnological aspects. Encyclopedia of Microbiology, 2, 351–360.Google Scholar
  35. Gadd, G. M., & Mowll, J. L. (1985). Copper uptake by yeast-like cells, hyphae, and chlamydospores of Aureobasidium pullulans. Experimental Mycology, 9(3).Google Scholar
  36. Gadd, G. M. (2009). Heavy metal pollutants: Environmental and biotechnological aspects. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 321–334). Oxford: Elsevier.CrossRefGoogle Scholar
  37. Ghazali, F. M., Rahman, R. N. Z. A., Salleh, A. B., & Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration & Biodegradation, 54(1), 61–67.CrossRefGoogle Scholar
  38. Gikas, P. (2008). Single and combined effects of nickel (Ni (II)) and cobalt (Co (II)) ions on activated sludge and on other aerobic microorganisms: A review. Journal of Hazardous Materials, 159(2), 187–203.CrossRefGoogle Scholar
  39. Goux, S., Shapir, N., El Fantroussi, S., Lelong, S., Agathos, S. N., & Pussemier, L. (2003). Long-term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water, Air and Soil Pollution: Focus, 3(3), 131–142.CrossRefGoogle Scholar
  40. Grass, G., Fan, B., Rosen, B. P., Lemke, K., Schlegel, H. G., & Rensing, C. (2001). NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. Journal of Bacteriology, 183(9), 2803–2807.CrossRefGoogle Scholar
  41. Gray, N. F. (1999). Water technology: An introduction for scientist and engineer. London: Arnold.Google Scholar
  42. Gupta, S. D., Lee, B. T., Camakaris, J., & Wu, H. C. (1995). Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli. Journal of Bacteriology, 177(15), 4207–4215.CrossRefGoogle Scholar
  43. Hendricks, J. K., & Mobley, H. L. (1997). Helicobacter pylori ABC transporter: Effect of allelic exchange mutagenesis on urease activity. Journal of Bacteriology, 179(18), 5892–5902.CrossRefGoogle Scholar
  44. Hu, N., & Zhao, B. (2007). Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiology Letters, 267(1), 17–22.CrossRefGoogle Scholar
  45. Huckle, J. W., Morby, A. P., Turner, J. S., & Robinson, N. J. (1993). Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Molecular Microbiology, 7(2), 177–187.CrossRefGoogle Scholar
  46. Hynninen, A., Tõnismann, K., & Virta, M. (2010). Improving the sensitivity of bacterial bioreporters for heavy metals. Bioengineered Bugs, 1(2), 132–138.CrossRefGoogle Scholar
  47. Incharoensakdi, A., & Kitjaharn, P. (2002). Zinc biosorption from aqueous solution by a halotolerant cyanobacterium Aphanothece halophytica. Current Microbiology, 45(4), 261–264.CrossRefGoogle Scholar
  48. Iskandar, N. L., Zainudin, N. A. I. M., & Tan, S. G. (2011). Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Sciences, 23(5), 824–830.CrossRefGoogle Scholar
  49. Kamika, I., & Momba, M. N. (2013). Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiology, 13(1), 1.CrossRefGoogle Scholar
  50. Kao, P. H., Huang, C. C., & Hseu, Z. Y. (2006). Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere, 64, 63–70.CrossRefGoogle Scholar
  51. Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1(6), 1079–1093.Google Scholar
  52. Lebrun, E., Brugna, M., Baymann, F., Muller, D., Lièvremont, D., Lett, M. C., et al. (2003). Arsenite oxidase, an ancient bioenergetic enzyme. Molecular Biology and Evolution, 20(5), 686–693.CrossRefGoogle Scholar
  53. Liu, H. L., Chen, B. Y., Lan, Y. W., & Cheng, Y. C. (2004). Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chemical Engineering Journal, 97, 195–201.CrossRefGoogle Scholar
  54. Ma, X., Novak, P. J., Ferguson, J., Sadowsky, M., LaPara, T. M., Semmens, M. J., et al. (2007). The impact of H2 addition on dechlorinating microbial communities. Bioremediation Journal, 11(2), 45–55.CrossRefGoogle Scholar
  55. Madoni, P., Davoli, D., Gorbi, G., & Vescovi, L. (1996). Toxic effect of heavy metals on the activated sludge protozoan community. Water Research, 30(1), 135–141.CrossRefGoogle Scholar
  56. Mameri, N., Boudries, N., Addour, L., Belhocine, D., Lounici, H., Grib, H., et al. (1999). Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Research, 33(6), 1347–1354.CrossRefGoogle Scholar
  57. Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., et al. (2007). CDD: A conserved domain database for interactive domain family analysis. Nucleic Acids Research, 35(suppl 1), D237–D240.CrossRefGoogle Scholar
  58. Martins, L. R., Lyra, F. H., Rugani, M. M., & Takahashi, J. A. (2015). Bioremediation of metallic ions by eight Penicillium species. Journal of Environmental Engineering, C4015007.Google Scholar
  59. Mezaguer, M., El Hayet Kamel, N., Lounici, H., & Kamel, Z. (2013). Characterization and properties of Pleurotus mutilus fungal biomass as adsorbent of the removal of uranium (VI) from uranium leachate. Journal of Radioanalytical and Nuclear Chemistry, 295(1), 393–403.CrossRefGoogle Scholar
  60. Mishra, A., & Malik, A. (2012). Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Research, 46(16), 4991–4998.CrossRefGoogle Scholar
  61. Morais, P. V., Branco, R., & Francisco, R. (2011). Chromium resistance strategies and toxicity: What makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals, 24(3), 401–410.CrossRefGoogle Scholar
  62. Muraleedharan, T. R., & Venkobachar, C. (1990). Mechanism of biosorption of Copper (Ii) by Ganoderma lucidum. Biotechnology and Bioengineering, 35(3), 320–325.CrossRefGoogle Scholar
  63. Murthy, S., Bali, G., & Sarangi, S. K. (2013). Effect of lead on metallothionein concentration in lead resistant bacteria Bacillus cereus isolated from industrial effluent. African Journal of Biotechnology, 10(71), 15966–15972.Google Scholar
  64. Naik, M. M., & Dubey, S. K. (2011). Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Current Microbiology, 62(2), 409–414.CrossRefGoogle Scholar
  65. Naik, M. M., Pandey, A., & Dubey, S. K. (2012). Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicology and Environmental Safety, 79, 129–133.CrossRefGoogle Scholar
  66. National Research Council. (1993). In situ bioremediation: When does it work? Washington, DC: National Academy Press.Google Scholar
  67. Navarro, C., Wu, L. F., & Mandrand‐Berthelot, M. A. (1993). The nik operon of Escherichia coli encodes a periplasmic binding‐protein‐dependent transport system for nickel. Molecular Microbiology, 9(6), 1181–1191.CrossRefGoogle Scholar
  68. Ng, W. J., & Tjan, K. W. (2006). Industrial wastewater treatment (No. 628.3 N48 2006.). Imperial College Press.Google Scholar
  69. Nies, D. H. (2003). Efflux‐mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2‐3), 313–339.CrossRefGoogle Scholar
  70. Nies, D. H. (1999). Microbial heavy metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.CrossRefGoogle Scholar
  71. Nies, D. H., & Silver, S. (1995). Ion efflux systems involved in bacterial metal resistances. Journal of Industrial Microbiology, 14(2), 186–199.CrossRefGoogle Scholar
  72. Niu, H., Xu, X. S., Wang, J. H., & Volesky, B. (1993). Removal of lead from aqueous solutions by Penicillium biomass. Biotechnology and Bioengineering, 42(6), 785–787.CrossRefGoogle Scholar
  73. Nourbakhsh, M., Sag, Y., Özer, D., Aksu, Z., Kutsal, T., & Caglar, A. (1994). A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters. Process Biochemistry, 29(1), 1–5.CrossRefGoogle Scholar
  74. Nucifora, G., Chu, L., Misra, T. K., & Silver, S. (1989). Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proceedings of the National Academy of Sciences, 86(10), 3544–3548.CrossRefGoogle Scholar
  75. Ock Joo, J., Choi, J. H., Kim, I. H., Kim, Y. K., & Oh, B. K. (2015). Effective bioremediation of cadmium (II), nickel (II), and chromium (VI) in a marine environment by using Desulfovibrio desulfuricans. Biotechnology and Bioprocess Engineering, 20(5), 937–941.CrossRefGoogle Scholar
  76. Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R., & Cosar, T. (2003). Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Technology, 90(1), 71–74.CrossRefGoogle Scholar
  77. Peitzsch, N., Eberz, G., & Nies, D. H. (1998). Alcaligenes eutrophus as a bacterial chromate sensor. Applied and Environmental Microbiology, 64(2), 453–458.Google Scholar
  78. Prasenjit, B., & Sumathi, S. (2005). Uptake of chromium by Aspergillus foetidus. Journal of Material Cycles and Waste Management, 7(2), 88–92.CrossRefGoogle Scholar
  79. Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41(9), 935–944.Google Scholar
  80. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27(2-3), 197–213.CrossRefGoogle Scholar
  81. Rifaat, H. M., Mahrous, K. F., & Khalil, W. K. (2009). Effect of heavy metals upon metallothioneins in some Streptomyces species isolated from Egyptian soil. Journal of Applied Sciences in Environmental Sanitation, 4(3), 197–206.Google Scholar
  82. Roane, T. M. (1999). Lead resistance in two bacterial isolates from heavy metal–contaminated soils. Microbial Ecology, 37(3), 218–224.CrossRefGoogle Scholar
  83. Saha, R., Saha, N., Donofrio, R. S., & Bestervelt, L. L. (2013). Microbial siderophores: A mini review. Journal of Basic Microbiology, 53(4), 303–317.CrossRefGoogle Scholar
  84. Şahan, T., Ceylan, H., & Aktaş, N. (2015). Optimization of biosorption of Zn (II) ions from aqueous solutions with low-cost biomass Trametes versicolor and the evaluation of kinetic and thermodynamic parameters. Desalination and Water Treatment, 57, 1–12.Google Scholar
  85. Salehizadeh, H., & Shojaosadati, S. A. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37(17), 4231–4235.CrossRefGoogle Scholar
  86. Savvaidis, I., Hughes, M. N., & Poole, R. K. (2003). Copper biosorption by Pseudomonas cepacia and other strains. World Journal of Microbiology and Biotechnology, 19(2), 117–121.CrossRefGoogle Scholar
  87. Schalk, I. J., Hannauer, M., & Braud, A. (2011). New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology, 13(11), 2844–2854.CrossRefGoogle Scholar
  88. Schelert, J., Dixit, V., Hoang, V., Simbahan, J., Drozda, M., & Blum, P. (2004). Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. Journal of Bacteriology, 186(2), 427–437.CrossRefGoogle Scholar
  89. Scherer, J., & Nies, D. H. (2009). CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Molecular Microbiology, 73(4), 601–621.CrossRefGoogle Scholar
  90. Schmidt, T., & Schlegel, H. G. (1994). Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. Journal of Bacteriology, 176(22), 7045–7054.CrossRefGoogle Scholar
  91. Shao, Z., & Sun, F. (2007). Intracellular sequestration of manganese and phosphorus in a metal-resistant fungus Cladosporium cladosporioides from deep-sea sediment. Extremophiles, 11(3), 435–443.CrossRefGoogle Scholar
  92. Siddiquee, S., Aishah, S. N., Azad, S. A., Shafawati, S. N., & Naher, L. (2013). Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Advances in Bioscience and Biotechnology, 4, 570–583.CrossRefGoogle Scholar
  93. Silver, S., & Phung, L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 71(2), 599–608.CrossRefGoogle Scholar
  94. Singh, S. K., Grass, G., Rensing, C., & Montfort, W. R. (2004). Cuprous oxidase activity of CueO from Escherichia coli. Journal of Bacteriology, 186(22), 7815–7817.CrossRefGoogle Scholar
  95. So, N. W., Rho, J. Y., Lee, S. Y., Hancock, I. C., & Kim, J. H. (2001). A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiology Letters, 194(1), 93–98.CrossRefGoogle Scholar
  96. Sone, Y., Pan-Hou, H., Nakamura, R., Sakabe, K., & Kiyono, M. (2010). Roles played by MerE and MerT in the transport of inorganic and organic mercury compounds in Gram-negative bacteria. Journal of Health Science, 56(1), 123–127.CrossRefGoogle Scholar
  97. Spain, A., & Alm, E. (2003). Implications of microbial heavy metal tolerance in the environment. Reviews in Undergraduate Research, 2, 1–6.Google Scholar
  98. Strong, P. J., & Burgess, J. E. (2008). Treatment methods for wine-related and distillery wastewaters: A review. Bioremediation Journal, 12(2), 70–87.CrossRefGoogle Scholar
  99. Suh, J. H., Yun, J. W., & Kim, D. S. (1999). Effect of extracellular polymeric substances (EPS) on Pb2+ accumulation by Aureobasidium pullulans. Bioprocess Engineering, 21(1), 1–4.Google Scholar
  100. Tabaraki, R., Ahmady-Asbchin, S., & Abdi, O. (2013). Biosorption of Zn (II) from aqueous solutions by Acinetobacter sp. isolated from petroleum spilled soil. Journal of Environmental Chemical Engineering, 1(3), 604–608.CrossRefGoogle Scholar
  101. Tangaromsuk, J., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2002). Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresource Technology, 85(1), 103–105.CrossRefGoogle Scholar
  102. Teszos, M., & Volesky, B. (1982). Copper biosorption by chemically treated Micrococcus luteus cells. Biotechnology and Bioengineer, 24(2), 8–15.Google Scholar
  103. Tobin, J. M., & Roux, J. C. (1998). Mucor biosorbent for chromium removal from tanning effluent. Water Research, 32(5), 1407–1416.CrossRefGoogle Scholar
  104. Townsley, C. C., & Ross, I. S. (1985). Copper uptake by Penicillium spinulosum. Microbios, 44, 125–134.Google Scholar
  105. Tripathi, M., Munot, H. P., Shouche, Y., Meyer, J. M., & Goel, R. (2005). Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Current Microbiology, 50(5), 233–237.CrossRefGoogle Scholar
  106. Tsezos, M., & Volesky, B. (1981). Biosorption of uranium and thorium. Biotechnology and Bioengineering, 23(3), 583–604.CrossRefGoogle Scholar
  107. Tunali, S., Cabuk, A., & Akar, T. (2006). Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 115(3), 203–211.CrossRefGoogle Scholar
  108. Umrania, V. V. (2006). Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresource Technology, 97(10), 1237–1242.CrossRefGoogle Scholar
  109. Uslu, G., & Tanyol, M. (2006). Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effect of temperature. Journal of Hazardous Materials, 135(1), 87–93.Google Scholar
  110. Valls, M., & De Lorenzo, V. (2002). Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiology Reviews, 26(4), 327–338.CrossRefGoogle Scholar
  111. Volesky, B. (1990). Biosorption by fungal biomass. In B. Volesky (Ed.), Biosorption of heavy metals (pp. 139–171). Boca Raton, Florida: CRC Press.Google Scholar
  112. Volesky, B. (2001). Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy, 59(2), 203–216.CrossRefGoogle Scholar
  113. Wireman, J., Liebert, C. A., Smith, T., & Summers, A. O. (1997). Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Applied and Environmental Microbiology, 63(11), 4494–4503.Google Scholar
  114. Yalçinkaya, Y., Arica, M. Y., Soysal, L., Denizli, A., Genç, Ö., & Bektaş, S. (2002). Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turkish Journal Chemistry, 26(3), 441–452.Google Scholar
  115. Yang, H. C., Cheng, J., Finan, T. M., Rosen, B. P., & Bhattacharjee, H. (2005). Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. Journal of Bacteriology, 187(20), 6991–6997.CrossRefGoogle Scholar
  116. Zafar, S., Aqil, F., & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98(13), 2557–2561.CrossRefGoogle Scholar
  117. Zaki, S., & Farag, S. (2010). Isolation and molecular characterization of some copper biosorped strains. International Journal of Environmental Science and Technology, 7(3), 553–560.CrossRefGoogle Scholar
  118. Zhang, S., Zhang, X., Chang, C., Yuan, Z., Wang, T., Zhao, Y., et al. (2016). Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere, 150, 33–39.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Madhu Choudhary
    • 1
    Email author
  • Raman Kumar
    • 2
  • Ashim Datta
    • 1
  • Vibha Nehra
    • 3
  • Neelam Garg
    • 3
  1. 1.ICAR-Central Soil Salinity Research InstituteKarnalIndia
  2. 2.Department of BiotechnologyMaharishi Markandeshwar University, MullanaAmbalaIndia
  3. 3.Department of MicrobiologyKurukshetra UniversityKurukshetraIndia

Personalised recommendations