Skip to main content

Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums

  • Chapter
Fatigue of Materials III

Abstract

In this paper the results of a study aimed at investigating and understanding the quasi-static, cyclic fatigue properties and final fracture behavior of an aluminum alloy reinforced with particulates of ceramic, a viable candidate for use in brake drums of emerging automobiles, is highlighted. The processing treatment used to engineer the aluminum alloy composite is detailed. Specimens of both the aluminum composite and the preform that was used to engineer the composite were deformed in both tension and cyclic fatigue over a range of maximum stress in the room temperature, laboratory air environment and the number of cycles-to-failure was recorded. The stress-fatigue life response of the aluminum alloy composite is compared with the preform. Both the quasi-static and cyclic fatigue fracture surfaces of the deformed and failed samples were comprehensively examined in a scanning electron microscope to reveal the macroscopic fracture mode and to concurrently characterize the intrinsic features on the fracture surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. V. Nair, J. K. Tien and R. C. Bates: International Metals Reviews, Vol. 30, No. 6, 1985, pp. 285–297.

    Google Scholar 

  2. M. Taya, M and R. J. Arsenault: Metal Matrix Composites: Thermomechanical Behavior, Pergamon Press, Elmsford, New York , 1989.4.

    Google Scholar 

  3. T. S. Srivatsan and T. S. Sudarshan (editors): Rapid Solidification Technology: An Engineering Guide, Technomic Publishing Inc., Lancaster, PA, 1993, pp. 603–700.

    Google Scholar 

  4. M. Taya, and T. Mori, “Strengthening Mechanisms of Metal Matrix Composites,” Acta Metallurgica, Vol. 35, pp. 155, 1987.

    Article  Google Scholar 

  5. R.J. Arsenault, and R.K. Everett, (editors), Metal-Matrix Composites: Mechanisms and Properties, Academic Press, New York, USA, 1991.

    Google Scholar 

  6. J. E. Allison and J. W. Jones: “Fatigue behavior of discontionuously-reinforced metal-matrix composites,” in Fundamentals of metal matrix composites (editors: S. Suresh, A. Mortensen and A. Needleman), Butterworth-Heinemann, 1993, pp. 269–296.

    Chapter  Google Scholar 

  7. W. H. Hunt, Jr., C.R. Cook and R. R. Sawtell: “Cost Effective High-Performance Powder Metallurgy Aluminum Matrix Composites for automotive applications,” 1991 Annual SAE Congress, Paper No. 910834, Detroit, Michigan, 1991.

    Google Scholar 

  8. W. H. Hunt, Jr.: “Cost-Effective high performance aluminum matrix composites for aerospace applications,” International Conference on PM Aerospace Materials, MPR Publishing, Laussane, Switzerland, 1991, pp. 32–1 to 32–15.

    Google Scholar 

  9. J. J. Lewandowski, C. Liu and W. H. Hunt, Jr.: in Powder Metallurgy Composites (editors: P. Kumar, K. Vedula and A. M. Ritter), TMS: The Minerals, Metals and Materials Society, Warrendale, PA, 1989.

    Google Scholar 

  10. D. L. McDanels: Metallurgical Transactions, Vol. 16A, 1985, pp. 1105–1115.

    Article  Google Scholar 

  11. M.J. Koczak, S.C. Khatri, J.E. Allison and M.G. Bader: in Fundamentals of Metal Matrix Composites (editors: S. Suresh, A. Mortensen and A. Needleman), Butterworth-Heinemann, Boston, MA., pp. 297–317, 1993.

    Chapter  Google Scholar 

  12. J. K. Shang, and R. O. Ritchie: “Crack bridging by uncracked ligaments during fatigue crack growth in silicon carbide reinforced aluminum alloy composite,” Metallurgica Transactions, Vol. 20A, 1989, pp. 897–908.

    Article  Google Scholar 

  13. J. K. Shang and R. O. Ritchie: “On the particle size dependence of fatigue crack propagation thresholds in SiC particulate-reinforced aluminum alloy composites,” Acta Metallurgica, Vol. 37, 1989, pp. 2267–2278.

    Article  Google Scholar 

  14. D. L. Davidson: “The growth of fatigue cracks through particulate silicon carbide reinforced aluminum alloys,” Engineering Fracture Mechanics, Vol. 33, 1989, pp. 965–978.

    Article  Google Scholar 

  15. Y. Sugimura and S. Suresh: “Effects of SiC content on fatigue crack growth in aluminum alloys reinforced with SiC particles,” Metallurgical Transactions, Vol. 23A, 1992, PP. 2231–2242.

    Article  Google Scholar 

  16. M. Manoharan and J. J. Lewandowski: Acta Metallurgica, Vol. 38, No. 3, 1990, pp. 489–499.

    Article  Google Scholar 

  17. S. Kumai, J. E. King and J. F. Knott: “Short and long fatigue crack growth in a SiC reinforced aluminum alloy,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 13, 1990, pp. 511–520.

    Article  Google Scholar 

  18. D. L. Davidson: “Fracture toughness of particulate metal-matrix composites,” in Metal Matrix Composites: Mechanisms and Properties (edited by: R.K. Evertt and R. J. Arsenault), Academic Press, San Diego, CA 1991, pp. 217–230.

    Google Scholar 

  19. D. L. Davidson: “Fracture characteristics of Al-4 Pct. Mg mechanically alloyed with SiC,” Metallurgical Transactions, Vol. 22A, 1991, pp. 97–110.

    Article  Google Scholar 

  20. T.S. Srivatsan, K. Yamaguchi, and E.A. Starke, Jr., “Effect of Environment and Temperature on the Low Cycle Fatigue Behavior of Aluminum Alloy 2020,” Materials Science and Engineering, Vol. 83, pp. 87–107, 1986.

    Article  Google Scholar 

  21. T.S. Srivatsan, and E.J. Coyne, Jr., “Cyclic Stress Response and Deformation Behavior of Precipitation Hardened Aluminum-Lithium Alloys,” International Journal of Fatigue, Vol. 8(4), pp. 201–210, 1986.

    Article  Google Scholar 

  22. T. Christman and S. Suresh: Materials Science and Engineering, Vol. 102, 1988, pp. 211–220.

    Article  Google Scholar 

  23. T.S. Srivatsan, and E.J. Coyne, Jr., “Micro mechanisms Governing the Fatigue Behavior of Aircraft Structural Alloys,” Materials Science and Technology, Vol. 5, pp. 548–558, 1989.

    Article  Google Scholar 

  24. T. S. Srivatsan, R. Auradkar, and A. Prakash, “Cyclic Stress Response and Cyclic Fracture Behavior of Silicon Carbide Reinforced Aluminum Metal Matrix Composite,” Engineering Fracture Mechanics, Vol. 40, No. 2, 1991, pp. 277–295, 1991.

    Article  Google Scholar 

  25. T. S. Srivatsan: “The low-cycle fatigue behavior of an aluminum alloy metal matrix composite,” International Journal of Fatigue, Vol. 14, No. 3, 1992, pp. 355–366.

    Article  Google Scholar 

  26. T. S. Srivatsan and R. Auradkar: “Effect of silicon carbide particulate on cyclic plastic strain response characteristics and fracture of aluminum alloy composites,” International Journal of Fatigue, Vol. 14, No. 6, 1992, pp. 173–183.

    Article  Google Scholar 

  27. United States Patent No. US 8,016,018 B2 Method of Manufacturing a Metal Matrix Composite, September 2011

    Google Scholar 

  28. ASTM E-606: “Stress Amplitude Controlled Fatigue of Metallic Materials,” ASTM, American Society of Testing and Materials, Philadelphia, PA 1993.

    Google Scholar 

  29. T. S. Srivatsan and M. Al-Hajri: “The fatigue and final fracture behavior of SiC particle-reinforced 7034 aluminum matrix composites, Composites, Part B, Vol. 33, 2002, pp. 391–404.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Manigandan, K., Srivatsan, T.S., Quick, T. (2014). Quasi-Static, Fatigue and Fracture Behavior of Aluminum Alloy Composite Used in Brake Drums. In: Srivatsan, T.S., Imam, M.A., Srinivasan, R. (eds) Fatigue of Materials III. Springer, Cham. https://doi.org/10.1007/978-3-319-48240-8_5

Download citation

Publish with us

Policies and ethics