Skip to main content

Comparative Study on Tribological Behavior of Ti-6Al-7Nb and SS AISI 316L Alloys, for Total Hip Prosthesis

  • Conference paper

Abstract

Tribological behavior of biomaterials AISI 316L and Ti-6Al-7Nb was investigated by wear tests, using tribometers ball on disc and sphere on plane. These tests consisted of measuring the volumetric wear and the friction coefficient. Tribological tests have been carried out in ambient air with oscillating tribotester in accord with standards ISO 7148, ASTM G99-95a under different conditions of loads (3, 6 and 10N) and sliding speed (1, 15 and 25mm.s-1). As counter pairs, we used the 100Cr6 ball. Results show that the three alloys had similar friction and wear performance, although their grain structures and compositions are different. Large frictional fluctuations occurred, probably caused by formation and periodic, localized fracture of a transfer layer. Higher friction coefficient with larger fluctuation and higher wear rate were observed at the higher sidings speed. The wear mechanism of Ti-6Al-7Nb transforms from ploughing and peeling off wear at low sliding speed to plastic deformation and adhesive wear at elevated speed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Hall, A. Unsworth, Friction in hip prosthesis, Biomaterials 18 (1997) 1017–1026.

    Article  Google Scholar 

  2. T. Ahlroos, Effect of lubricant on the wear of prosthetic joint materials, PhD Thesis, Helsinki, University of Technology, Finland, 2001.

    Google Scholar 

  3. H. McKellop, I.C. et al. Wear characteristics of UHMW polyethylene: a method for accurately measuring extremely low wear rates, J. Biomed. Mater. Res. 12 (6) (1978) 895–927.

    Article  Google Scholar 

  4. H. McKellop, I.C. et al Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device, J. Biomed. Mater. Res. 15 (5) (1981) 619–653.

    Article  Google Scholar 

  5. H. McKellop, B. Lu, P. Benya, Friction lubrication and wear of cobalt-chromium, alumina and zirconia hip prostheses compared on a joint simulator, in: Proceedings of the ORS 38th Annual Meeting, Washington, DC, 16–20 February, 1992.

    Google Scholar 

  6. A. Unsworth, et al, Frictional resistance of new and explanted artificial hip joints, Wear 190 (1995)226–231.

    Article  Google Scholar 

  7. H. Oonishi, H. Igaki, Y. Takayama, Comparisons of wear of UHMWPE sliding against metal and alumina in total hip prosthesis, Bioceramics 1 (1989) 272–277

    Google Scholar 

  8. N. Yasumaru, Mater. Trans. 39 (1998) 1046.

    Article  Google Scholar 

  9. T. Bell, C.X. Li, Adv. Mater. Process. 160 (6) (2002) 49.

    Google Scholar 

  10. Y.F. Liu, et al, Mater. Sci. Eng., A Struct. Mater. Prop. Microstruct. Process. 458 (2007) 366.

    Article  Google Scholar 

  11. H. Dong, P.-Y. Qi, X.Y. Li, R.J. Llewellyn, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct. Process. 431 (2006) 137.

    Article  Google Scholar 

  12. Yimin Lin, Jian Lu, Liping Wang, Tao Xu, Qunji Xue, Acta Mater. 54 (2006) 5599.

    Article  Google Scholar 

  13. Mahfujur Rahman, Julfikar Haider, M.S.J. Hashmi, Surf. Coat. Technol. 200 (2005) 1645.

    Article  Google Scholar 

  14. Gui-jiang Li et al. « Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel. J. Surface & Coatings Technology 202 (2008) 2749–2754

    Article  Google Scholar 

  15. Nicoma, M., 2008. “Mechanical biocompatibilities of titanium alloys for biomedical applications”. J. Mech. Behav. Biomed. Mater. 1, 30–42.

    Article  Google Scholar 

  16. Murr, L.E., et al. 2009. “Microstructure and mechanical behaviour of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications”. J. Mech. Behav. Biomed. Mater. 2, 20–32.

    Article  Google Scholar 

  17. Cai Z, et al. “Torsional fretting wear of a biomedical Ti6Al7Nb alloy for nitrogen ion implantation in Bovine serum”. Tribology International (2012), http://dx.doi.org/10.1016/j.triboint.2012.06.009

    Google Scholar 

  18. N. Masahashi et al. “Photo-induced properties of anodicoxidelms on Ti6Al4V” journal of thin Solid Films 520 (2012) 4956–1964

    Article  Google Scholar 

  19. Miloš Janecek, et al. “Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth» journal of the mechanical behavior of biomedical materials 4(2011)417422.

    Article  Google Scholar 

  20. Cheng J, et al. “High temperature tribological behaviour of a Ti-46Al-2Cr-2Nb intermetallics”, Intermetallics (2012), http://dx.doi.org/10.1016/j.intermet.2012.06.013

    Google Scholar 

  21. L. Bolzoni , et al. “Mechanical properties and micro structural evolution of vacuum hot-pressed titanium and Ti-6Al-7Nb alloy” journal of the mechanical behaviour of biomedical materials 9(2012)9199

    Article  Google Scholar 

  22. Ida K, et al. Clinical application of pure titanium crowns. Dent Mater J 1985;4:191–5.

    Article  Google Scholar 

  23. Bergman B, et al “A 2-year follow-up studyof titanium crowns”. Acta Odontol Scand 1990;48:113–7.

    Article  Google Scholar 

  24. Hirata T, et al “Studies on polishing of Ag-Pd-Cu-Au alloy with five dental abrasives”. J Oral Rehab 2001;28(8):773–7.

    Article  Google Scholar 

  25. Kawazoe T, Suese K. “Clinical application of titanium crowns”. J Dent Med 1989; 30(3):317–28.

    Google Scholar 

  26. Kuroiwa A, Igarashi Y. “Application of pure titanium to metal framework”. J Jpn Prosthodont Soc 1998; 42:547–58.

    Article  Google Scholar 

  27. Y. Okazaki, et al Effect of friction on anodic polarization properties of metallic biomaterials, Biomaterials 23 (2002) 2071–2077.

    Article  Google Scholar 

  28. M.A. Khan, R.L. Williams, D.F. Williams, The corrosion behavior of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions, Biomaterials 20 (1999) 631–637.

    Article  Google Scholar 

  29. L.J. Xu, Y.Y. Chen, Z.G. Liu, F.T. Kong, The micro structure and properties of Ti-Mo-Nb alloys for biomedical application, J. Alloy Compd. 453 (2008) 320–324.

    Article  Google Scholar 

  30. Y. Okazaki, Y. Ito, K. Kyo, T. Tateishi, Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al, Mater. Sci. Eng. A 213 (1996) 138–147.

    Article  Google Scholar 

  31. M. Niinomi, Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A 243 (1998) 231–236.

    Article  Google Scholar 

  32. A. Choubey, R. Balasubramaniam, B. Basui, Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti-6Al-4V in simulated physiological environment, J. Alloy Compd. 381 (2004) 288–294.

    Article  Google Scholar 

  33. Y. Mantani, M. Tajima, Phase transformation of quenched alpha martensite by aging in Ti-Nb alloys, Mater. Sci. Eng. A 438 (2006) 315–319.

    Article  Google Scholar 

  34. Lopez, M.F., Soriano, L., Palomares, F.J., Sanchez-Agudo, M., Fuentes, G.G., Gutierrez, A., Jimenez, J.A., 2002. « Soft x-ray absorption spectroscopy study of passive and oxide layers of titanium alloys”. Surf. Interface Anal. 33, 570–579.

    Article  Google Scholar 

  35. Morand, C, et al 2003. “AFM and SEM characterization of non-toxic vanadium free Ti alloys used as biomaterials. Appl. Surf. Sci. 220, 79–87.

    Article  Google Scholar 

  36. Yoneyama T, et al. Deformation property of titanium and dental alloys in an indentation test. Dent Japan 1997; 33:92–6.

    Google Scholar 

  37. Gil FJ, et al. “A study of the abrasive resistance of metal alloys with applications in dental prosthetic fixators”. Bio Med Mater Eng 1995;5(3): 161–7.

    Google Scholar 

  38. Atkins AG, Tabor D. Plastic indentation in metals with cones. J Mech Phys Solids 1965; 13:149–64.

    Article  Google Scholar 

  39. Sundararajan G, Tirupataiah Y. The hardness-flow stress correlation in metallic materials. Bull Mater Sci 1994; 17:747–70.

    Article  Google Scholar 

  40. Buchanan RA, et al. “Wear-accelerated corrosion of Ti-6Al-4V and nitrogen-ion-implanted Ti-6Al-4V: mechanisms and influence of fixed-stress magnitude”. J Biomed Mater Res 1987;21:367–77.

    Article  Google Scholar 

  41. Yap AU, et al. “Comparative wear ranking of dental restoratives with the BIOMAT wear simulater. J Oral Rehab 1999; 26(3):228–35.

    Article  Google Scholar 

  42. Doi H, et al. Mechanical properties and corrosion resistance of Ti-5Al-13Ta alloy castings. J Jpn Soc Dent Mater Dev 1998; 17:247–5

    Google Scholar 

  43. D. Iijima , et al. Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses Biomaterials 24 (2003) 1519–1524.

    Article  Google Scholar 

  44. N.P. Suh, Update on the delamination theory of wear, in: D.A. Rigney (Ed.), Fundamentals of Friction and Wear of Materials, ASM, Materials Park, OH, 1980, p. 43.

    Google Scholar 

  45. H. Dong, T. Bell, Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear 238 (2000) 131–137.

    Article  Google Scholar 

  46. G. Manivasagam, et al. “Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices, Corros. Rev. 21 (2003) 125–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Mamoun, F., Omar, A., Mohamed, L., Leila, D., Iost, A. (2014). Comparative Study on Tribological Behavior of Ti-6Al-7Nb and SS AISI 316L Alloys, for Total Hip Prosthesis. In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_32

Download citation

Publish with us

Policies and ethics