Thermodynamic Optimization of Mn-Si-C System

  • Min-Kyu Paek
  • Youn-Bae Kang
  • Jong-Jin Pak
Conference paper


The critical evaluation and thermodynamic optimization of Mn-Si-C and its sub-binary systems have been carried out over the whole composition range from room temperature to above the liquidus temperature. The solution properties of the liquid systems have not been clearly described because the liquid solution exhibits a high degree of short-range-ordering. In order to predict the thermodynamics of the liquid solution, the liquid phases were optimized by the modified quasichemical model. The model parameters of the solid phases were also optimized by the compound energy formalism to best reproduce the phase diagram and important thermodynamic properties in Mn-Si-C system. Using the model parameters, various thermodynamic calculations were carried out. The present database will be a part of larger thermodynamic database for the ferromanganese alloy database.


Mn-Si-C Thermodynamic database Modified Quasichemical model Phase diagram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.D. You, B.W. Lee and J.J. Pak, “Manganese loss during the oxygen refining of high-carbon ferromanganese melts”, Metals and Materials, 5 (1999), 497–502.CrossRefGoogle Scholar
  2. 2.
    W. Huang, “Thermodynamic assessment of the Mn-C system”, Scand. J. Metall., 19 (1990) 26–32.Google Scholar
  3. 3.
    D. Djurovic et al., “Thermodynamic assessment of the Mn-C system”, Calphad, 34 (2010) 279–285.CrossRefGoogle Scholar
  4. 4.
    P.Y. Chevalier, E. Fisher and A. Rivet, “A Thermodynamic evaluation of the Mn-Si system”, Calphad, 19 (1995) 57–68.CrossRefGoogle Scholar
  5. 5.
    J. Gröbner, H.L. Lukas and F. Aldinger, “Thermodynamic calculation of the ternary Al-Si-C”, Calphad, 20 (1996) 247–254.CrossRefGoogle Scholar
  6. 6.
    A.D. Pelton et al., “The modified quasichemical model I — Binary solutions”, Metall. Mater. Trans. B, 31B (2000) 651–659.CrossRefGoogle Scholar
  7. 7.
    A. Shukla, Y.B. Kang and A.D. Pelton, “Thermodynamic assessment of the Si-Zn, Mn-Si, Mg-Si-Zn and Mg-Mn-Si systems”, Calphad, 32 (2008) 470–477.CrossRefGoogle Scholar
  8. 8.
    A.D. Pelton and P. Chartrand, “The modified quasichemical model: Part II — Multicomponent solutions”, Metall. Mater. Trans. A, 32A (2001) 1355–1360.CrossRefGoogle Scholar
  9. 9.
    A.D. Pelton, “A general geometric thermodynamic model for multicomponent solutions”, Calphad, 25 (2001) 319–328.CrossRefGoogle Scholar
  10. 10.
    M. Hillert, “The Compound Energy Formalism”, J. Alloys Comp., 320 (2001) 161–176.CrossRefGoogle Scholar
  11. U.M. Hillert and M. Jarl, “A model for alloying effects in ferromagnetic metals”, Calphad, 2 (1978) 227–238.CrossRefGoogle Scholar
  12. 12.
    A. Katsnelson, F. Tsukihashi and N. Sano, “Determination of manganese and carbon activities of Mn-C melts at 1628K”, ISIJ Int., 33 (1993) 1045–1048.CrossRefGoogle Scholar
  13. 13.
    J. Fenstad, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway (2000).Google Scholar
  14. 14.
    E.J. Kim, B.D. You and J.J. Pak, “Thermodynamics of carbon in liquid manganese and ferromanganese alloys”, Metall. Mater. Trans. B, 34B (2003) 51–59.CrossRefGoogle Scholar
  15. 15.
    V.T. Witusiewicz, A.K. Biletski and V.S. Shumikin, “Thermodynamic properties of liquid Mn-C alloys”, Metally, 6 (1988) 26.Google Scholar
  16. 16.
    A.T. Dinsdale, Calphad, “SGTE data for pure elements”, 15 (1991) 317–425.Google Scholar
  17. 17.
    S.V. Meschel and O.J. Kleppa, “Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry”, J. Alloys Comp., 257 (1997) 227–233.CrossRefGoogle Scholar
  18. 18.
    A.I. Zaitsev et al., “Thermodynamic studies of manganese carbides”, Dokl. Phys. Chem., 395 (2004) 632–636.Google Scholar
  19. 19.
    W.M. Dawson and F.R. Sale, “Enthalpy of formation of manganese carbides, Mn23C6”, Metall. Mater. Trans. A, 11A (1980) 1849–1852.CrossRefGoogle Scholar
  20. 20.
    R. Benz, J.F. Elliott and J. Chipman, “Solid phases of the Mn-C system”, Metall. Trans., 4 (1973) 1449–1452.CrossRefGoogle Scholar
  21. 21.
    M.K. Paek et al., “Thermodynamic interactions among carbon, silicon and iron in carbon saturated manganese melts”, Korean J. Met. Mater., 50 (2012) 45–51.CrossRefGoogle Scholar
  22. 22.
    K. Tang, V. Olso and S.E. Olsen, “Manganese and silicon activities in liquid carbon-saturated Mn-Si-C alloys”, Steel Research, 73 (2002) 77–81.Google Scholar
  23. 23.
    W. Ding and S.E. Olsen, “Reaction equilibria in the production of manganese ferroalloys”, Metall. Mater. Trans. B, 27B (1996) 5–17.CrossRefGoogle Scholar
  24. 24.
    V.Y. Dashevskii et al., “Solubility of carbon in liquid Mn-Si system”, Dokl. Akad. Nauk, 345 (1995) 75–78.Google Scholar
  25. 25.
    R. Ni, Z. Ma and S. Wei, “Thermodynamics of Mn-Fe-C and Mn-Si-C system”, Steel Resarch, 61 (1990) 113–116.Google Scholar
  26. 26.
    A. Tanaka, “Activities of manganese in Mn-Fe-C, Mn-Si-C and Mn-Fe-Si-C melts at 1673K”, Trans. JIM, 21 (1980) 27–33.CrossRefGoogle Scholar
  27. 27.
    P. Spinat et al., “Characterization of two isotypic phases Mn8Si2C and Fe8Si2C”, Compt. Rend. Acad. Sei. Paris Sér. C, 274 (1972) 1159–1162.Google Scholar
  28. 28.
    P. Spinat and P. Herpin, “Neutron diffraction studies of the Mn5SiC phase and the solid solutions (Mn1-xMox)5SiC and (Mn1-xFex)5SiC”, Bull. Soc. fr. Minéral. Crystallogr., 99 (1976) 13–20.Google Scholar
  29. 29.
    J.C. Schuster, “Silicon carbide and transition metals”, Int. J. Refract. Met. Hard Mater., 12 (1994) 173–177.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2014

Authors and Affiliations

  • Min-Kyu Paek
    • 1
  • Youn-Bae Kang
    • 2
  • Jong-Jin Pak
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringHanyang UniversityAnsanKorea
  2. 2.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangKorea

Personalised recommendations