Advertisement

A Methodology for Modeling Electromagnetic Confinement Systems: Application to Levitation Melting

  • Nagy El-Kaddah
  • Thinium T. Natarajan
Conference paper

Abstract

A modeling strategy is presented for computing the electromagnetic field and the shape of the molten metal in electromagnetic confinement systems. This strategy involves the use of a hybrid finite element/integral technique to calculate the electromagnetic field and force distribution in the melt. The free surface shape is determined from minimization of electromagnetic, gravitational and surface tension energies using the Lagrange method of multipliers. This approach was applied to model the electromagnetic levitation melting process. The model was found to accurately predict the measured shape of levitated droplets.

Keywords

Electromagnetic confinement Modeling Finite element method Levitation melting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gagnoud, and M. Garnier, “Physical Analysis and Modelization of Phenomena in Electromagnetic Levitation in Conical Inductor,” IEEE Transactions on Magnetics, 21(5) (1985), 1886–1888.CrossRefGoogle Scholar
  2. 2.
    B. Q. Li and J. W. Evans, “Computation of Shapes of Electromagnetically Supported Meniscus in Electromagnetic Casters,” IEEE Transactions on Magnetics, 25 (6) (1989), 4443–4448CrossRefGoogle Scholar
  3. 3.
    J. R. Bhamidipati and N. El-Kaddah, “Calculation of Electromagnetic Field and Melt Shape in the Magnetic Suspension Melting Process,” Magnetohydrodynamics in Process Metallurgy, ed. J. Szekely, J.W. Evans, K. Blazek and N. El-Kaddah (Warrendale, PA; The Metallurgical Society of AIME, 1992) 69–74.Google Scholar
  4. 4.
    D. W. Fugate, and J. F. Hoburg, “Shape and Stability Computations of Electromagnetically Confined Liquid Metal Boundaries,” Metallurgical Transactions B, 24B (1) (1993), 171–178.CrossRefGoogle Scholar
  5. 5.
    C. H. Winstead, P. C. Gazzerro, and J. F. Hoburg, “Surface-Coupled Modeling of Magnetically Confined Liquid Metal in Three-Dimensional Geometry,” Metallurgical and Material Transcations B, 29(B) (1) (1998), 275–281.CrossRefGoogle Scholar
  6. 6.
    S. Y. Hahn, Y. Sakai, T. Tsukuda, M. Hozawa, N. Imaishi, and S. Kitagawa, “Effect of Processing Conditions on Drop Behavior in an Electromagnetic Levitator,” Metallurgical and Materials Transactions B, 29B (1) (1998), 223–228.CrossRefGoogle Scholar
  7. 7.
    Y. Asakuma, S. H. Hahn, Y. Sakai, T. Tsukada, M. Hozawa, T. Matsumoto, H. Fujii, K. Nogi and N. Imaishi, “Equilibrium shape of a molten silicon drop in an electromagnetic levitator in microgravity environment,” Metallurgical and Materials Transactions B, 31B (2) (2000), 327–329.CrossRefGoogle Scholar
  8. 8.
    V. Bojarevics, G. Tinios, K. Pericleous and M. Cross, “CFD Modeling of Magnetic Levitation Casting,” International Congress on Electromagnetic Processing of Materials’ (Centre Francais de l’Electricite, Paris, 1997) 211–216.Google Scholar
  9. 9.
    A.D. Sneyd and H.K. Moffatt, “Fluid Dynamical Aspects of the Levitation Melting Process,” J. of Fluid Mech., 117, (1982), 45–70.CrossRefGoogle Scholar
  10. 10.
    N. El-Kaddah, and T. T. Natarajan, “The Influence of Coil Design on Melt Shape in Electromagnetic Lévitation Melting,” IISC. The Sixth International Iron and Steel Congress, Nagoya, Japan, 4 (1990), 380–387.Google Scholar
  11. 11.
    M. Pierre, and J. R. Roche, “Numerical Simulation of Tridimensional Electromagnetic Shaping of Liquid Metals,” (Research Report RR-1687, Institut National De Recherche en Information et en Automatique, 1992).Google Scholar
  12. 12.
    S.J. Salon and J.P. Peng, “A Hybrid Finite Element-Boundary Element Formulation Of Poisson’s Equation For Axisymmetric Vector Potential Problems,” J. Appl. Phys., 53(11) (1982), 8420–8422.CrossRefGoogle Scholar
  13. 13.
    J.L. Meyer, N. El-Kaddah and J. Szekely, “A New Method For Computing Electromagnetic Force Fields in Induction Furnaces,” IEEE Trans. Magnetics, 23(1987), 1806–1810CrossRefGoogle Scholar
  14. 14.
    T.T. Natarajan, and N. El-Kaddah, “A Methodology for Two-dimensional Finite Element Analysis of Electromagnetically driven flow in Induction Stirring Systems,” IEEE Trans. on Magnetics, 35(3) (1999), 1773–1776CrossRefGoogle Scholar
  15. 15.
    J.D. Lavers and M. Ramadan Ahmed, “Mathematical Modeling of Electromagnetic Confinement,” Int. Symposium on “Casting of Near Net Shape Products,” Ed. Y. Sahai, J.E. Battles, R.S. Carbonara and C.S. Mobley, (Warrendale, PA; The Metallurgical Society of AIME, 1988)395–410.Google Scholar
  16. 16.
    M. R. Ahmed, and J. D. Lavers, “Boundary Element Analysis of the Electromagnet Casting Mould,” IEEE Transaction on Magnetics, 25 (1989), 2843–2845.CrossRefGoogle Scholar
  17. 17.
    K. Eppler, and H. Harbrecht, “Fast Wavelet BEM for 3D Electromagnetic Shaping,” Applied Numerical Mathematics, 54 (2005), 537–554.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2014

Authors and Affiliations

  • Nagy El-Kaddah
    • 1
  • Thinium T. Natarajan
    • 2
  1. 1.Dept. of Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA
  2. 2.United States Steel Corporation Research & Technology CenterMunhallUSA

Personalised recommendations