Arsenic and Antimony Capacities in Ni-Cu Mattes and Slags

  • Ramana G. Reddy
  • Jonkion M. Font
Conference paper

Abstract

A thermodynamic model for a priori predictions of arsenic and antimony impurity capacity in Ni-Cu mattes and slags was developed based on the Reddy-Blander (RB) capacity model. The As and Sb capacities were calculated a-priori considering the RB capacity model in Ni-Cu mattes and FeO-FeO1.5-MgO-CuO0.5-NiO-SiO2 slag at 1573 K and 0.1 to 1 atm partial pressure of SO2. The results showed an excellent agreement between the model calculated and experimental data of arsenic and antimony capacities between the mattes and slag. The impurity capacity model developed here, can be extended for prediction of impurity capacities in multi-component base metal slags and base metal mattes. Such a priori predictions of impurity capacities can lead to develop or improve the efficiency of impurity removal from the base metal smelting, converting and refining processes.

Keywords

Arsenic Antimony Impurity Capacity Ni-Cu mattes Slags 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Reddy, “Emerging Technologies in Extraction and Processing of Metals,” Metallurgical and Materials Transactions B, 34, (2003), 137–152.CrossRefGoogle Scholar
  2. 2.
    R. G. Reddy. “Recovery of Pollution Causing Elements from Copper Slags,” Minor Elements 2000: Processing and Environmental Aspects of As, Sb, Se and Te, C. Young (editor), (SME, Littleton, CO, USA, 2000), 239–249.Google Scholar
  3. 3.
    M. Nagamori and P. J. Mackey, Metall. Trans. B, 9B, (1978) 255–265.CrossRefGoogle Scholar
  4. 4.
    P. C. Chaubal and H. Y. Sohn, Metall. Trans. B, 17B, (1986), 51–60.CrossRefGoogle Scholar
  5. 5.
    T. Rosenqvist, Principles of Extractive Metallurgy, (McGraw-Hill, N.Y, 1983) 324–342.Google Scholar
  6. 6.
    J.M. Font, M. Hino and K. Itagaki, “Minor Elements Distribution between Iron-Silicate Base Slag and NisS2-FeS Matte under High Partial Pressures of SO2,” Mater. Trans. JIM, 39, (1998), 834–840.CrossRefGoogle Scholar
  7. 7.
    J.M. Font, M. Hino and K. Itagaki, “Thermodynamic Evaluation of Distribution Behavior of VA Elements in Nickel Matte Smelting,” Metal. Rev. of the MMIJ, 15 (2), (1998), 202–220.Google Scholar
  8. 8.
    Kimio Itagaki and Akira Yazawa. “Thermodynamic Evaluation of Distribution Behavior of Arsenic, Antimony and Bismuth in Copper Smelting,” Advances in Sulfides Smelting Symposium, H. Y. Sohn, D.B. George and A. D. Zunkel (editor). (TMS, Warrendale, PA, 1983), pp. 119–142.Google Scholar
  9. 9.
    G. Roghani, Y. Takeda and K. Itagaki, “Phase Equilibrium and Minor Element Distribution between FeOx-SiO2-MgO-Based Slag and Cu2S-FeS Matte at 1573 K under High Partial Pressures of SO2,” Metall. Trans. B, 31, (2000), 705–712.CrossRefGoogle Scholar
  10. 10.
    J.M. Font, M. Hino and K. Itagaki, “Phase Equilibrium and Minor-Element Distribution between NisS2-FeS Matte and Calcium Ferrite slag under High Partial Pressures of SO2,” Metall. Trans. B, 31, (2000) 1231–1239.CrossRefGoogle Scholar
  11. 11.
    U.R. G. Reddy and J. M. Font, “Arsenic Capacities of Copper Smelting Slags”, Metall. Mat. Trans. B, 34B, (2003), 565–571.CrossRefGoogle Scholar
  12. 12.
    J. Font and R. G. Reddy, “Modeling of Impurity Distribution between Mattes and Slags”, Vol. IV- Pvrometallurgy of Copper, C. Diaz, C. Landolt and T. Utigard, (editors), (Copper 2003, Chile, 2003), 301–313.Google Scholar
  13. 13.
    J. M. Font and R.G. Reddy, “Modeling of Antimonate Capacity in copper and Nickel Smelting Slags,” Trans. Inst. Min. Metall. C, 114, (2005), 160–64.Google Scholar
  14. 14.
    R. G. Reddy and M. Blander, “Modeling of Sulfide Capacities of Silicate Melts,” Metall, and Mat. Trans.B, 18, (1987), 591–596.CrossRefGoogle Scholar
  15. 15.
    R. G. Reddy and M. Blander, “Sulfide Capacities of MnO-SiO2 Slags,” Metall. Mat. Trans. B, 20, (1989), 137–140.CrossRefGoogle Scholar
  16. 16.
    R. G. Reddy and W. Zhao, 1995, “Sulfide Capacities of Na2O-SiO2 Melts,” Metall. Mat. Trans. B, 32, (1995), 925–928.CrossRefGoogle Scholar
  17. 17.
    R. G. Reddy, “Impurity Capacities in Metallurgical Slags”, Yazawa International Symposium, Materials Processing Fundamentals and New Technologies, F. Kongoli, K. Itagaki, C. Yamauchi and H.Y. Sohn, (editors), (TMS, Warandale, PA, USA, 2003), 1, 25–48.Google Scholar
  18. 18.
    B. Derin, O. Yucel and R. G. Reddy, “Sulfide Capacity Modeling of FeOx-MO-SiO2 (MO=CaO, MnO, MgO) Melts”, Minerals & Metallurgical Processing, 28 (1), (2010), 33–36.Google Scholar
  19. 19.
    A. Yahya and R. G. Reddy, “Sulfide Capacities of CaO-MgO-AlO1.5, MgO-MnO-AlO1.5 and CaO-MgO-MnO-AlO1.5 Slags”, Trans. Inst. Min. Metall. C, 120 (1), (2011), 45–48.Google Scholar
  20. 20.
    B. Derin, O. Yucel, and R. G. Reddy, “Modeling of Sulfide Capacities of Binary Titanate Slags,” EPD Congress. (TMS, Warrandale. PA, USA, 2004), 155–160.Google Scholar
  21. 21.
    B. Chen, R. G. Reddy and M. Blander, “Sulfide Capacities of CaO-FeO-Si02 Slags,” 3rd International Conference on Molten Slags and Fluxes, The Institute of Metals, (London, UK, 1998), 270–272.22.Google Scholar
  22. 22.
    A. D. Pelton, G. Eriksson and A. Romero-Serrano, “Calculation of Sulfide Capacities of Multi-component Slags,” Metall. Trans. B, 24, (1993), 817–825.CrossRefGoogle Scholar
  23. 23.
    B. Derin, O. Yucel and R. G. Reddy, “Predicting of sulfide capacities of industrial lead smelting slags”. F. Kongoli and R. G. Reddy (editors), Sohn International Symposium; Advanced Processing of Metals and Materials Volume 1: Thermo and Physicochemical Principles: Non-Ferrous High-Temperature Processing, (TMS Warrendale, PA, USA, 2006), 1, 237–244.Google Scholar
  24. 24.
    B. Derin and R. G. Reddy, “Sulfur and Oxygen Partial Pressure Ratios Prediction in Copper Flash Smelting Plants using Reddy-Blander Model”, F. Kongoli, K. Itagaki, C. Yamauchi and H.Y. Sohn, (editors), Yazawa International Symposium on Metallurgical and Materials Processing. (TMS, Warandale, PA, USA, 2003), 1, 625–632.Google Scholar
  25. 25.
    HSC Chemistry software, A. Roine, ver. 4.1, Outokumpu Research Oy, Pori, Finland.Google Scholar
  26. 26.
    FactSageTM 5.0 software, Thermfact Ltd. (Montreal) and GTT-Technologies (Aachen), 2001.Google Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2014

Authors and Affiliations

  • Ramana G. Reddy
    • 1
  • Jonkion M. Font
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations