Skip to main content

Formation of Self-Assembled Monolayer on Cerium Conversion Coated AZ31 Mg Alloy

  • Chapter
Magnesium Technology 2014

Abstract

Magnesium alloys are recognized as alternatives to Al alloys and steel to reduce the weight of structural materials. However, a major obstacle to the widespread use of magnesium alloys is its poor corrosion resistance. Therefore, further surface treatment of magnesium and its alloy is important in meeting several industrial specifications. In a previous research, we investigated the surface treatment of AZ31 magnesium alloy using cerium conversion coating. The anticorrosion properties could be improved with the cerium treatment. In this present research, self-assembled monolayer (SAM) was adsorbed on the surface of cerium conversion coated AZ31 magnesium alloy. The SAM thin film was deposited using (Tridecafluoro-1, 1, 2, 2-tetrahydrooctyl) trimethoxysilane (FAS13) and Tetrakis(trimethylsiloxy)titanium (TTMS) as a catalyst. The corrosion resistance of cerium conversion coated AZ31 Mg alloy was improved with SAM post treatment. Furthermore, the contact angle increases from 13 deg. to 169 deg. indicating to production of super hydrophobic surface with SAM post treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. SA Salman, M. Okido, Anodization of magnesium (Mg) alloys to improve corrosion resistance, in: G-L Song (Eds.), Corrosion prevention of magnesium alloys, Woodhead Publishing, Cambridge, 2013, pp. 197–231.

    Chapter  Google Scholar 

  2. C. Blawert, W. Dietzel and E. Ghali, G. Song, Adv. Eng. Mater., 8, 511 (2006).

    Article  Google Scholar 

  3. A.L. Rudd, C.B. Breslin, F. Mansfeld, “The corrosion protection afforded by rare earth conversion coatings applied to magnesium,” Corrosion Science, 42 (2000), 275–288.

    Article  Google Scholar 

  4. F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli, C. Monticelli, “Stannate and permanganate conversion coatings on AZ31 magnesium alloy,” Corrosion Science, 49 (2007), 4542–4552.

    Article  Google Scholar 

  5. W. Zhou, D. Shan, E. Han, W. Ke, “Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy,” Corrosion Science, 50 (2008), 329–337.

    Article  Google Scholar 

  6. M. Mosiałek, G. Mordarski, P. Nowak, W. Simka, G. Nawrat, M. Hanke, R.P. Socha, J. Michalska, “Phosphate-permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies,” Surface & Coatings Technology, 206 (2011), 51–62.

    Article  Google Scholar 

  7. S. A. Salman, K. Kuroda, M. Okido, Formation of vanadate conversion coating on AZ31 magnesium alloy, in Norbert Hort et al (Eds.), Magnesium technology 2013, The Minerals, Metals & Materials Society, 2013.

    Google Scholar 

  8. Manuele Dabala, Katya Brunelli, Enrico Napolitani, Maurizio Magrini Surface and Coatings Technology 172 (2003) 227–232

    Article  Google Scholar 

  9. Manuele Dabala, Lidia Armelao, Alberto Buchberger, Irene Calliari Appl. Surf. Sci. 172 (2001) 312–322

    Article  Google Scholar 

  10. A. Froats, T. K. Aune, D. Hawke, W. Unsworth, J. Hillis, in Metals Handbook, 9th ed., Vol. 13, ASM Int., Materials Park, OH 1987, pp. 740–754.

    Google Scholar 

  11. S. A. Salman, Ryoichi Ichino, and Masazumi Okido, Development of Cerium-based Conversion Coating on ZA31 Magnesium Alloy, Chem. Lett., 36, 8, 1024–2025 (2007).

    Article  Google Scholar 

  12. S. A. Salman and M. Okido, Self-assembled monolayers formed on AZ31 Mg alloy, Journal of Physics and Chemistry of Solids 73, 7, (2012). p. 863–866.

    Article  Google Scholar 

  13. T. Ishizaki, M. Okido, Y. Masuda, N. Saito, M. Sakamoto, Corrosion resistant performances of alkanoic and phosphonic acids derived Self-Assembled monolayers on magnesium alloy AZ31 by vapor-phase method, Langmuir, 27(2011) p. 6009–6017.

    Article  Google Scholar 

  14. Chataib, M.; Roberfroid, E. M.; Novis, Y.; Pireaux, J. J.; Caudano, R.; Lutgen, P.; Feyder, G., Polymer surface reactivity enhancement by ultraviolet ArF laser irradiation: An x-ray photoelectron spectroscopy study of polytetrafluoroethylene and polyethyleneterepthalate ultraviolet treated surfaces, J. Vac. Sci. Technol, A 1989, 7, 3233.

    Article  Google Scholar 

  15. Hozumi, A.; Ushiyama, K.; Sugimura, H.; Takai, O., Fluoroalkylsilane Monolayers Formed by Chemical Vapor Surface Modification on Hydroxylated Oxide Surfaces, Langmuir 1999, 15, 7600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Salman, S.A., Akira, N., Kuroda, K., Okido, M. (2014). Formation of Self-Assembled Monolayer on Cerium Conversion Coated AZ31 Mg Alloy. In: Alderman, M., Manuel, M.V., Hort, N., Neelameggham, N.R. (eds) Magnesium Technology 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48231-6_65

Download citation

Publish with us

Policies and ethics