Skip to main content

Modelling the Metallurgical Reactions during Homogenisation of an AA3103 Alloy

  • Chapter
Essential Readings in Light Metals

Abstract

The as cast microstructure of a DC cast AA3103 alloy consists of equiaxed grains with a cellular structure. The periphery of the cells contains high volume fractions of intermetallic phases and there are large variations in the solid solution level across the cells. During a typical homogenisation heat treatment the material is heated at 50 to l00(degrees)C/hour up to a temperature of 500-600(degrees)C and held there for some hours. The material is then cooled to room temperature (extrusion ingot) or fed into the hot-rolling mill (sheet ingot). A model for the metallurgical reactions occurring in this system is constructed based on a cylindrical cell geometry. The as cast microstructure is adopted from a solidification model (Alstruc) that predicts the micro segregation, the volume fraction and the composition of the primary phases. A thermodynamic description of the two phases Al6(Mn,Fe) and Al15(Mn,Fe)3Si is proposed, assuming matrix to be a dilute solution and the phases to be regular solutions. Fe and Mn are allowed to Subscriptstitute each other completely. Precipitation, growth and coarsening of the phases are modelled individually in each position across the cell, each particle is designated to a size class and infinite diffusion is assumed inside particles. Diffusion across the cell is accounted for. Model results are compared with measured number density and size distribution of precipitates and electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 289.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Hirasawa, “Precipitation process of Al-Mn and Al-Cr supersaturated solid solution in presence of age hardening phases”, Scripta Met. Vol. 9, 1975, pp. 955–958.

    Article  Google Scholar 

  2. G. Vörös and I. Kovacs, “Precipitation processes in DC-cast AlMn(Fe,Si) alloys”, Key Engineering Materials Vols. 44 & 45, 1990, pp. 247–256.

    Article  Google Scholar 

  3. I. Moricz et al., “The effect of Fe and Si on the precipitation behaviour of Mn in Aluminium”, Key Engineering Materials Vols. 44 & 45, 1990, pp. 265–270.

    Article  Google Scholar 

  4. R. G. Kamat, J. N. Yelim and S. Saimoto, “Morphology and precipitation of α-Al(Fe,Mn)Si phase in hot rolled AA3004”, Z. Metallkd. 86, 1995, pp. 49–53.

    Google Scholar 

  5. S. Ding, J. Qiu and J. G. Morris, Aluminium alloys for packaging III, Ed. By S.K. Das, The Minerals, Metals & Materials Society, 1998, pp. 39–47.

    Google Scholar 

  6. L. Lodgaard and N. Ryum, Aluminium Transactions, Vol. 2, No. 2, 2000, pp. 267–275.

    Google Scholar 

  7. P. Haasen and R. Wagner, “High-resolution microscopy and early-stage precipitation kinetics”, Met. Trans. A, Vol. 23A, 1992, pp. 1901–1914.

    Article  Google Scholar 

  8. T. E. Johnsen and B. R. Henriksen, “Modelling of precipitation and dissolution of Mg2Si in AlMgSi alloys”, Proceed, of the 4th international conference on aluminium alloys, Vol. I, ed. T. H. Sanders Jr. and E.A. Starke Jr., 1994, pp. 612–619.

    Google Scholar 

  9. O. R. Myhr et al. “Process model for welding of Al-Mg-Si exstrusions, Part 1: Precipitate stability”, Science and Technology of Welding and Joining, Vol. 2, No. 6, 1997, pp. 245–253.

    Article  Google Scholar 

  10. D. Godard et al., “The modelling of the heterogeneous precipitation in Al_Zn-Mg-Cu alloys during quenching”, Proceed. Of the Int. Conf. On solid-solid phase transformations ’99, Ed. By M. Koiwa, K. Otsuka andT. Miyazaki, The Japan Institute of Metals, 1999, pp. 145–147.

    Google Scholar 

  11. B. Dutta, E. J. Palmiere and C. M. Sellars, “Modelling the kinetics of strain induced precipitation in Nb Microalloyed steels”, Acta Mater. Vol. 49, 2001, pp. 785–794.

    Article  Google Scholar 

  12. A. Deschamps and Y. Brechet, “Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modeling of precipitation kinetics and yield stress”, Acta Mater. Vol. 47, 1999, pp. 293–305.

    Article  Google Scholar 

  13. C. Sigli, “Nucleation, growth and coarsening of spherical precipitates in aluminium alloys”, Materials Science Forum Vols. 331–337, 2000, pp. 513–518.

    Article  Google Scholar 

  14. J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modelling in Zirconium containing commercial aluminium alloys”, Acta Mater. Vol. 49, 2001, pp. 599–613.

    Article  Google Scholar 

  15. O. R. Myhr and Ø. Grong, “Modelling of non-isothermal transformations in alloys containing a particle distribution”, Acta mater., Vol. 48, 2000, pp. 1605–1615.

    Article  Google Scholar 

  16. A. L. Dons et al., “The Alstruc microstructure solidification model for industrial aluminium alloys”, Met. Trans. A, Vol. 30A, 1999, pp. 2135–2146.

    Article  Google Scholar 

  17. P. Gordon, “Principles of phase diagrams in materials systems”. Krieger Publishing Company, Malabar, Florida, 1968.

    Google Scholar 

  18. C. Sigli, L. Maenner, C. Sztur and R. Shahani, “Phase diagram, Solidification and heat treatment of aluminium alloys”, Proceedings of ICAA-6, 1998, pp. 87–98.

    Google Scholar 

  19. Aylward & Findlay, Si Chemical Data, Sec. Ed. Jacaranda Wiley Ltd., 1974.

    Google Scholar 

  20. H. Bakker. Diffusion in solid metals and alloys, Vol. 26, Landort-Börnstein, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  21. D. Altenpohl, Aluminium und aluminiumleigierungen, Sprenger Verlag, 1965.

    Book  Google Scholar 

  22. ASM Handbook, Vol. 2. Properties and selection: Nonferrous alloys and special-purpose materials, ASM International, 1990.

    Google Scholar 

  23. O. R. Myhr, Ø. Grong and J. Andersen, “Modelling of the age hardening behaviour of Al-Mg-Si alloys”, Acta mater. Vol. 49, 2001, pp. 65–75.

    Article  Google Scholar 

  24. R. Wagner and R. Kampmann, Mater. Sci. Technol.-A Comprehensive Treatment, P. Haasen, ed., Weinhiem, VCH, 1990, Vol. 5, p. 213.

    Google Scholar 

  25. H. B. Aaron, D. Fainstain and G.R. Kotler: J. Appl. Phys., 1970, Vol. 41, p. 4404.

    Google Scholar 

  26. M. F. Ashby, “The theory of the critical shear stress and work hardening of dispersion-hardened crystals”, in Proc. Second Bolton Landing Conf. On Oxide Dispersion Strengthening, Gordon and Breach, Science Publishers, Inc., New Yorc, 1968, pp. 143–205.

    Google Scholar 

  27. E. Nes, “Modelling of work hardening and stress saturation in FCC metals”, Progress in materials science Vol. 41, 1998, pp. 129–193.

    Article  Google Scholar 

  28. E. Trømborg, A. L. Dons and L. Arnberg, “Investigation of the Al6(Mn,Fe) → α-Al(Mn,Fe)Si phase transformation during homogenization of AA3003 and AA3004 aluminium alloys”, Proceed, of the 3th international conference on aluminium alloys, Vol. II, ed. L. Arnberg, O. Lohne, E. Nes and N. Ryum, 1992, pp. 270–275.

    Google Scholar 

  29. H. Cama et al., “Intermetallic phase selection and transformation in aluminium 3xxx alloys”, Proceed, of the 4th decennial international conference of solidification processing, Sheffield, 1997, pp. 555–558.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Håkonsen, A., Mortensen, D., Benum, S., Pettersen, T., Furu, T. (2016). Modelling the Metallurgical Reactions during Homogenisation of an AA3103 Alloy. In: Grandfield, J.F., Eskin, D.G. (eds) Essential Readings in Light Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-48228-6_130

Download citation

Publish with us

Policies and ethics