Skip to main content

Effect of Heat Index on Microstructure and Mechanical Behavior of Friction Stir Processed AZ31

  • Chapter

Abstract

Friction stir processing modifies the micro structure and properties of metals through intense plastic deformation. The frictional heat input affects the microstructure evolution and resulting mechanical properties. 2 mm thick commercial AZ31B-H24 Mg alloy was friction stir processed under various process parameter combinations to investigate the effect of heat index on micro structure and properties. Recrystallized grain structure in the nugget region was observed for all processing conditions with decrease in hardness. Results indicate a reduced tensile yield strength and ultimate tensile strength compared to the as-received material in H-temper, but with an improved hardening capacity. The strain hardening behavior of friction stir processed material is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C. J. Dawes, G.B. Patent 9125978.8 (1991).

    Google Scholar 

  2. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, Scr. Mater., 42 (1999) 163–168.

    Article  Google Scholar 

  3. R.S. Mishra and Z.Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng. R.: Reports, 50 (2005) 1–78.

    Article  Google Scholar 

  4. L. Cui et al., “Friction stir welding of a high carbon steel,” Scr. Mater., 56 (2007), 637–640.

    Article  Google Scholar 

  5. C.I. Chang, X.H. Du, J.C. Huang, “Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing,” Scr. Mater., 57 (2007) 209–212.

    Article  Google Scholar 

  6. C.I. Chang et al., “Producing nanograined micro structure in Mg-Al-Zn alloy by two-step friction stir processing,” Scr. Mater., 59 (2008), 356–359.

    Article  Google Scholar 

  7. G. Bhargava et al., “Influence of texture on mechanical behavior of friction-stir-processed magnesium alloy,” Metall. Mater. Trans., 41 (2010) 13–17.

    Article  Google Scholar 

  8. W. Yuan et al., “Effect of texture on the mechanical behavior of ultra-fine grained magnesium Alloy,” to be submitted to Scr. Mater..

    Google Scholar 

  9. W.J. Arbegast, P.J. Hartley, in: Proceedings of the Fifth International Conference of Trends in Welding Research, Pine Mountain, GA, June 1–5, 1998, p. 541.

    Google Scholar 

  10. J.A. Esparza et al., “Friction-stir welding of magnesium alloy AZ31B,” J. Mater. Sci. Lett., 21 (2002) 917–920.

    Article  Google Scholar 

  11. S.H.C. Park, Y.S. Sato, H. Kokawa, “Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D,” J. Mater. Sci., 38 (2003) 4379–4383.

    Article  Google Scholar 

  12. W.B. Lee, Y.M. Yeon, S.B. Jung, “Joint properties of friction stir welded AZ31B — H24 magnesium alloy,” Mater. Sci. Technol., 19 (2003) 785–790.

    Article  Google Scholar 

  13. L. Commin et al., “Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters,” Acta Mater., 57 (2009) 326–334.

    Article  Google Scholar 

  14. J. Yang et al., “Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg-3Al-1Zn alloy,” Mater. Sci. Eng. A, 527 (2010) 708–714.

    Article  Google Scholar 

  15. C.I. Chang et al., “Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys,” Scr. Mater., 51 (2004), 509–514.

    Article  Google Scholar 

  16. M.R. Barnett et al., “Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn”, Acta Mater., 52 (2004) 5093–5103.

    Article  Google Scholar 

  17. J. Koike et al., “The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys,” Acta Mater., 51 (2003) 2055–2065.

    Article  Google Scholar 

  18. S.R. Agnew and O. Duygulu, “Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B,” Int. J. Plast., 21 (2005)1161–1193.

    Google Scholar 

  19. J. Luo et al., “Diminishing of work hardening in electroformed polycrystalline copper with nano-sized and uf-sized twins,” Mater. Sci. Eng. A, 441 (2006) 282–290.

    Article  Google Scholar 

  20. N. Afrin et al., “Strain hardening behavior of a friction stir welded magnesium alloy,” Scr. Mater., 57 (2007) 1004–1007.

    Article  Google Scholar 

  21. S.M. Chowdhury et al., “Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy,” Mater. Sci. Eng. A, 527 (2010) 2951–2961.

    Article  Google Scholar 

  22. U.F. Kocks and H. Mecking, “Physics and phenomenology of strain hardening: the FCC case,” Prog. Mater. Sci., 48 (2003) 171–273.

    Article  Google Scholar 

  23. H.-W. Lee et al., “Studies on the improvement of tensile ductility of hot-extrusion AZ31 alloy by subsequent friction stir process,” J. Alloys Compd., 475 (2009) 139–144.

    Article  Google Scholar 

  24. C.W. Sinclair et al., “A model for the grain size dependent work hardening of copper,” Scr. Mater., 55 (2006), 739–742.

    Article  Google Scholar 

  25. I. Kovacs et al., “Grain size dependence of the work hardening process in A199.99,” Phys. Status Solidi A 194 (2002) 3–18.

    Article  Google Scholar 

  26. J.A. del Valle et al., “Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling,” Acta Mater., 54 (2006) 4247–4295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Yuan, W., Mishra, R.S. (2011). Effect of Heat Index on Microstructure and Mechanical Behavior of Friction Stir Processed AZ31. In: Sillekens, W.H., Agnew, S.R., Neelameggham, N.R., Mathaudhu, S.N. (eds) Magnesium Technology 2011. Springer, Cham. https://doi.org/10.1007/978-3-319-48223-1_39

Download citation

Publish with us

Policies and ethics