Skip to main content

Tensile and Creep Deformation Mechanisms in Rolled AZ31

  • Chapter
  • 1899 Accesses

Abstract

Tensile experiments were performed on a rolled AZ31 alloy in an SEM at 323K (50°C), 423K (150°C), and 523K (250°C) in order to analyze the deformation mechanisms in-situ. Electron backscatter diffraction (EBSD) was performed both before and after deformation. The mechanical anisotropy was considerably reduced with temperature. Extension twinning was observed at 323K (50°C), but disappeared at 423K (150°C), indicating that the CRSS of non-basal systems becomes smaller than that of twinning at T<423K (150°C). From 423K (150°C) to 523K (250°C), a transition occurred in the dominant deformation mode from basal + prismatic <a> to mainly prismatic <a> slip. This is consistent with a decrease of the CRSS of non-basal slip systems with increasing temperature. In-situ tensile-creep experiments, performed at approximately the yield stress at 423K (150°C), indicated less slip and more grain boundary cracking occurs under creep deformation as compared to the higher-stress tensile experiments.

Keywords

  • Microstructure
  • Tensile
  • Slip
  • Twinning
  • Creep
  • Magnesium
  • Lightweight Alloys

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-48203-3_19
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-48203-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Couret and D. Caillard, “An Insitu Study of Prismatic Glide in Magnesium .2. Microscopic Activation Parameters”, Acta Metallurgica, 33 (8) (1985), 1455–1462.

    CrossRef  Google Scholar 

  2. S. R. Agnew and O. Duygulu, “Plastic Anisotropy and the Role of Non-basal Slip in Magnesium Alloy AZ31B”, nt J Plast, 21 (6) (2005), 1161–1193.

    CrossRef  Google Scholar 

  3. M. R. Barnett, “A Taylor Model Based Description of the Proof Stress of Magnesium AZ31 during Hot Working”, Metall Mater Trans A, 34A (9) (2003), 1799–1806.

    CrossRef  Google Scholar 

  4. W. B. Hutchinson and M. R. Barnett, “Effective Values of Critical Resolved Shear Stress for Slip in Polycrystalline Magnesium and Other HCP Metals”, Scr Mater, 63 (7) (2010), 737–740.

    CrossRef  Google Scholar 

  5. M. R. Barnett et al., “A Semianalytical Sachs Model for the Flow Stress of a Magnesium Alloy”, Metall Mater Trans A, 37A (7) (2006), 2283–2293.

    CrossRef  Google Scholar 

  6. A. Chapuis and J. H. Driver, “Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals”, Acta Mater, 59 (5) (2011), 1986–1994.

    CrossRef  Google Scholar 

  7. B. Hutchinson et al., “Deformation Modes and Anisotropy in Magnesium Alloy AZ31”, nt J Mater Res, 100 (4) (2009), 556–563.

    CrossRef  Google Scholar 

  8. J. A. Del Valle et al., “Deformation Mechanisms Responsible for the High Ductility in a Mg AZ31 Alloy Analyzed by Electron Backscattered Diffraction”, Metall Mater Trans A, 36A (6) (2005), 1427–1438.

    CrossRef  Google Scholar 

  9. J. A. Del Valle and O. A. Ruano, “Separate Contributions of Texture and Grain Size on the Creep Mechanisms in a FineGrained Magnesium Alloy”, Acta Mater, 55 (2) (2007), 455–466.

    CrossRef  Google Scholar 

  10. J. Koike et al., “Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K”, Mater Trans, 44 (4) (2003), 445–451.

    CrossRef  Google Scholar 

  11. N. Stanford et al., “Deformation Mechanisms and Plastic Anisotropy in Magnesium Alloy AZ31”, Acta Mater, 59 (12) (2011), 4866–4874.

    CrossRef  Google Scholar 

  12. M. R. Barnett et al., “Role of Grain Boundary Sliding in the Anisotropy of Magnesium Alloys”, Scr Mater, 61 (3) (2009), 277–280.

    CrossRef  Google Scholar 

  13. C. J. Boehlert et al., “In situ Scanning Electron Microscopy Observations of Tensile Deformation in a Boron-Modified Ti-6Al-4V Alloy”, Scr Mater, 55 (5) (2006), 465–468.

    CrossRef  Google Scholar 

  14. C. J. Boehlert et al., “Slip System Characterization of Inconel 718 Using In-Situ Scanning Electron Microscopy”, Advanced Materials & Processes, 168 (11) (2010), 41–45.

    Google Scholar 

  15. A. S. Khan et al., “Mechanical Response and Texture Evolution of AZ31 Alloy at Large Strains for Different Strain Rates and Temperatures”, nt J Plast, 27 (5) (2011), 688–706.

    CrossRef  Google Scholar 

  16. A. D. Rollet and S. I. Wright, “Typical Textures in Metals”, Te ture and Anisotropy, ed. U. F. Kocks, et al. (Cambridge, Cambridge University Press, 1998), 179–239.

    Google Scholar 

  17. T. Obara et al., “[11–22](-1–123) Slip System in Magnesium”, Acta Metallurgica, 21 (7) (1973), 845–853.

    CrossRef  Google Scholar 

  18. M. F. Ashby and R. A. Verrall, “Diffusion-Accommodated Flow and Superplasticity”, Acta Metallurgica, 21 (2) (1973), 149–163.

    CrossRef  Google Scholar 

  19. A. K. Mukherje, “Rate Controlling Mechanism in Superplasticity”, Mater Sci Eng, 8 (2) (1971), 83–89.

    CrossRef  Google Scholar 

  20. 20. C.J. Boehlert et al., “ n situ Analysis of the Tensile and Tensile-Creep Deformation Mechanisms in Rolled AZ31”, Acta Mater, in print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Chen, Z., Boehlert, C., Gutiérrez-Urrutia, I., Llorca, J., Pérez-Prado, M.T. (2012). Tensile and Creep Deformation Mechanisms in Rolled AZ31. In: Mathaudhu, S.N., Sillekens, W.H., Neelameggham, N.R., Hort, N. (eds) Magnesium Technology 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-48203-3_19

Download citation