Skip to main content

Influence of Coke Real Density on Anode Reactivity Consequence on Anode Baking

  • Chapter
Essential Readings in Light Metals

Abstract

Abstract

An increase in the real density of coke has been observed in recent years.

This increase, which is due to higher coke calcination temperatures, leads to an improvement in coke reactivity.

A study has been carried out using different cokes and baking temperatures.

The effects of the real density of coke on anode reactivity and the required anode baking temperature are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Belitskus, “Effects of petroleum coke calcination and anode baking temperature on anode properties” (Light Metals, 1991), 557–563.

    Google Scholar 

  2. C. Dreyer, “Anode reactivity — Influence of the baking process” (Light Metals, 1989), 595–602

    Google Scholar 

  3. K.L Bullough, H.C. Marshall and J.W. Pendley, “Some effects of coke calcination temperature on reduction cell voltage” (Light Metals, 1974), 1007–1022.

    Google Scholar 

  4. M.H. Wagner, H. Pauls, H. Tillmanns and G. Wilhelmi, “Calcination : the effect of maximum heat treatment temperature on the properties of coke”, 16th biennial Conference on Carbon 1983, 585–583.

    Google Scholar 

  5. A.F. Bopp, G.B. Groff and B.H. Howard,“Influence of maximum temperature and heat soak times on the properties of calcined coke”, (Light Metals, 1984), 869–882.

    Google Scholar 

  6. S.R. Brandtzaeg and H.A. Oye, “High temperature calcination of anthracite, petrol coke and pitch coke”, (Light Metals. 1985), 839–852.

    Google Scholar 

  7. E. Hardin — C. Beilharz — L. Melvin, “A comprehensive review of the effect of coke structure and properties when calcined at various temperatures”, (Light Metals, 1992), 501–508.

    Google Scholar 

  8. M. Legin-Kolar and D. Ugarkovic, “Petroleum coke structure — influence of feedstock composition”, (Carbon, vol. 31, 383–390, n° 2, 1993).

    Google Scholar 

  9. D. Beltiskus and D. Danka, “A comprehensive determination of effects of calcined petroleum coke properties on aluminium reduction cell anode properties”, (Light Metals, 1988), 429–439.

    Google Scholar 

  10. T.W. Fu and K.M. Roussel, “Some variables affecting the CO2 reactivity of petroleum coke”, (Carbon, 1986), 591–593.

    Google Scholar 

  11. W.K. Fischer and R. Perruchoud, “Influence of coke calcination parameters on petroleum coke quality”, (Light Metals, 1985), 811–826.

    Google Scholar 

  12. S.M. Hume, W.K. Fischer, R. Perruchoud, B.J. Welch, “A model for petroleum coke reactivity”, (Light Metals, 1993), 525–531.

    Google Scholar 

  13. L. Lavigne — L. Castonguay, “Prediction of anode performance from calcined coke properties”, (Light Metals. 1992), 569–575.

    Google Scholar 

  14. P.J. Rhedey, “Carbon reactivity and aluminium reduction cell anodes”, (Light Metals, 1982), 713–725.

    Google Scholar 

  15. L. Bonnetain, G. Hoynant, Les Carbones. (MASSON, vol. 2, p. 298–306, 1965).

    Google Scholar 

  16. E. Barrillon — J. Pinoir, “Use of high-sulfur cokes in the production of prebaked anodes”, (Light Metals. 1977), 289–299.

    Google Scholar 

  17. E. Barrillon, “Evolution thermique de la texture poreuse des cokes de pétrole”, (Carbon, vol. 5, 167–171, 1967).

    Article  Google Scholar 

  18. E. Barrillon, “Modification de la texture du coke de pétrole lors d’une désulfuration thermique”, Journal Chimie Physique (1968–65 n° 3), 428.

    Google Scholar 

  19. R. Garbarino and R.T. Tonti, “Desulfurization and its effect on calcined coke properties”, (Light Metals. 1993), 517–520.

    Google Scholar 

  20. P. Rhedey, “A review of factors affecting carbon anode consumption in the electrolytic production of Aluminium”, (Light Metals. 1971), 385–408.

    Google Scholar 

  21. W.K. Fischer, F. Keller and R. Perruchoud, “Interdependence between anode net consumption and pot design, pot operating parameters and anode properties”, (Light Metals. 1991), 681–686.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Coste, B., Schneider, J.P. (2016). Influence of Coke Real Density on Anode Reactivity Consequence on Anode Baking. In: Tomsett, A., Johnson, J. (eds) Essential Readings in Light Metals. Springer, Cham. https://doi.org/10.1007/978-3-319-48200-2_11

Download citation

Publish with us

Policies and ethics