Skip to main content
  • 1098 Accesses

Abstract

Crack propagation in polycrystalline grains is analyzed using a novel multiscale polycrystalline model. The approach combines reduced order descriptors of microstructures with explicit representation of polycrystals at critical areas (eg. crack tips). For the critical areas, refined meshes are employed to discretize each crystal. The crack propagation in the microstructure is calculated using the variational multiscale method which allows for arbitrary transgranular and intergranular crack paths. The computational load is reduced substantially by combining probabilistic representation of the macroscale problem with exact resolution of the crystals at the crack tips. One example of grain boundary failure is demonstrated in this paper, showing exceptional mesh convergence and efficiency of the numerical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ortiz, M. and Pandolfi, A., Int. J. Numer. Methods Eng., 44(1999), p. 1267–1282.

    Article  Google Scholar 

  2. Zavattieri, P.D. and Espinosa, H.D., Acta Mater., 49(2001), p. 4291–4311.

    Article  Google Scholar 

  3. Dunne, F. P. E., A. J. Wilkinson, and R. Allen., Int. J. Plast. 23(2007), p. 273–295.

    Article  Google Scholar 

  4. Sun, S. and Sundararaghavan, V., Acta Mater., 60(2012), p. 5233–5244.

    Article  Google Scholar 

  5. Rudraraju, S., Salvi, A., Garikipati, K., and Waas, A. M., Int. J. Solids Struc., 47 (2010), p. 901–911.

    Article  Google Scholar 

  6. Rudraraju, S., Salvi, A., Garikipati, K., and Waas, A. M., Compos Struct, 94(2012), p. 3336–3346

    Google Scholar 

  7. Garikipati, K., and Hughes, T. J., Comput. Methods. App. Mech. Eng., 159 (1998), p. 193–222.

    Article  Google Scholar 

  8. Garikipati, K., Comput. Model. Eng. Sci. 3(2002), p.175–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Sundararagahavan, V., Sun, S. (2013). Modeling Crack Propagation in Polycrystalline Alloys using a Variational Multiscale Cohesive Method. In: Li, M., Campbell, C., Thornton, K., Holm, E., Gumbsch, P. (eds) Proceedings of the 2nd World Congress on Integrated Computational Materials Engineering (ICME). Springer, Cham. https://doi.org/10.1007/978-3-319-48194-4_36

Download citation

Publish with us

Policies and ethics