Skip to main content

Influence of Clay Exfoliation on the Properties of Evoh/Clay Flexible Films

  • Chapter
Characterization of Minerals, Metals, and Materials 2015

Abstract

This work aims to incorporate the Bof White Clay, from Boa Vista, Paraiba State, Brazil, as natural nanofiller in Ehylene vinyl alcohol copolymer (EVOH) and obtain flexible films. Nanocomposite was obtained using a twin-screw extruder, and film formed using a blow extruder machine. The flexible film nanocomposite was characterized, by tensile tests, XRD, DSC and their properties were evaluated. The results showed a good interaction between the clay and the EVOH resulting in an increase of properties of films nanocomposites as compared to films neat polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. J. Polymer 2008; 49: 3187–3204

    Article  Google Scholar 

  2. Shikinaka, K.; Aizawa, K.; Fujii, N.; Osada, Y.; Tokita, M.; Watanabe, J.; Shigehara, K. Flexible, Transparent Nanocomposite Film with a Large Clay Component and Ordered Structure Obtained by a Simple Solution-Casting Method. J. Langmuir 2010; 26: 12493–12495.

    Article  Google Scholar 

  3. Roco, M. C. Nanotechnology: convergence with modern biology and medicine. Current Opinion in Biotechnology 2003; 14(3): 337–346.

    Article  Google Scholar 

  4. Henriette M.C. A. Review: Nanocomposites for food packaging applications. Food Research International 2009; 42: 1240–1253.

    Article  Google Scholar 

  5. Delbem, M.F.; Valera, T.S.; Valenzuela-Diaz, F.R.; Demarquette, N.R. MODIFICATION OF A BRAZILIAN SMECTITE CLAY WITH DIFFERENT QUATERNARY AMMONIUM SALTS. Quim. Nova 2010; 33 (2): 309–315.

    Article  Google Scholar 

  6. Artzi, N.; Tzur, A.; Narkis, M. The Effect of Extrusion Processing Conditions on EVOH/Clay Nanocomposites at Low Organo-Clay Contents. J. Polymer Composites 2005. Published online in Wiley InterScience (www.interscience.wiley.com).

    Google Scholar 

  7. Modak, S. K.; Mandal, A.; Chakrabarty, D. Studies on Synthesis and Characterization of Poly(methyl methacrylate)-Bentonite Clay Composite by Emulsion Polymerization and Simultaneous In Situ Clay Incorporation. Polymer Composites 2013; 34: 32–40.

    Article  Google Scholar 

  8. Sarkar, M.; Dana, K.; R Ghatak, S.; Banerjee, A. Polypropylene-clay composite prepared from Indian bentonite. Bull. Mater. Sci. 2008; 31: 23–28.

    Article  Google Scholar 

  9. Ribeiro, S. P. S.; Estevão, L. R. M.; Pereira, C.; Rodrigues, J.; Nascimento, R. S. V. Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulations. J. Polymer Degradation and Stability 2009; 94 (3): 421–431.

    Article  Google Scholar 

  10. Franco-Urquiza, E.; Santana, O. O.; Gámez-Pérez, J.; Martínez, A. B.; Maspoch, M. Ll. Influence of processing on the ethylene-vinyl alcohol (EVOH) properties: Application of the successive self-nucleation and annealing (SSA) technique. Express polymer Letters 2010; 4 (3): 153–160.

    Article  Google Scholar 

  11. Mokwena, K.K.; Tang, J. Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Food Science and Nutrition 2012; 52: 640–650.

    Google Scholar 

  12. Ramakrishnan, S. Well-Defined Ethylene-Vinyl Alcohol Copolymers via Hydroboration: Control of Composition and Distribution of the Hydroxyl Groups on the Polymer Backbone. J. Macromolecules 1991; 24: 3753–3759.

    Article  Google Scholar 

  13. Lagaron, J. M.; Giménez, E.; Saura, J. J. Degradation of high barrier ethylene-vinyl alcohol copolymer under mild thermal-oxidative conditions studied by thermal analysis and infrared spectroscopy. J. Polymer International 2001; 50: 635–642.

    Article  Google Scholar 

  14. Lima, J. A.; Felisberti, M. I. “Poly(ethylene-co-vinyl alcohol) and poly(methyl methacrylate) blends: Phase behavior and morphology”. J. European Polymer 2008; 44:1140–1148.

    Article  Google Scholar 

  15. Aucejo S.; Marco C.; Gavara R. Water effect on the morphology of EVOH copolymers. J. Applied Polymer Science 1999; 74: 1201–1206.

    Article  Google Scholar 

  16. Kim, D.; Kown, H.; Seo, J. EVOH Nanocomposite Films with Enhanced Barrier Properties under High Humidity Conditions. J. Polymer Composites 2013. DOI 10.1002/pc.22707.Published online in Wiley Online Library (wileyonlinelibrary.com). Acessed July 2014.

    Google Scholar 

  17. Alvarez V. A., Ruseckaite V. A., Vázquez A.: Kinetic analysis of thermal degradation in poly(ethylene-vinyl alcohol) copolymers. Journal of Applied Polymer Science 2003; 90:3157–3163

    Article  Google Scholar 

  18. Cerrada M. L., Pérez E., Pereña J. M., Benavente R.: Wide-angle X-ray diffraction study of the phase behavior of vinyl alcohol and ethylene copolymers. Macromolecules 1998; 31: 2559–2564.

    Article  Google Scholar 

  19. Franco-Urquiza E.; Gamez-Perez J.; Sánchez-Soto M.; Santana O. O.; Maspoch M. L. The effect of organomodifier on structure and properties of poly(ethylenevynil alcohol)/organo-modified montmorillonite composites. J. Polymer International, in press 2010.

    Google Scholar 

  20. Brito, G. F.; Oliveira, A. D.; Araújo, E. M.; Melo, T. J. A. Nanocompósitos de Polietileno/Argila Bentonita Nacional: Influência da Argila e do Agente Compatibilizante PE-g-MA nas Propriedades Mecânicas e de Inflamabilidade. J. Polímeros: Ciência e Tecnologia 2008; 18 (2): 170–177.

    Article  Google Scholar 

  21. Silva, A. A.; Valenzuela-Diaz, F. R.; Martins, G. S. V.; Rodrigues, M. G. F. Preparação de argilas organofílicas usando diferentes concentrações de sal quaternário de amônio. J. Cerâmica 2007; 53: 417–422.

    Article  Google Scholar 

  22. Paiva, L. B.; Morales, A. R. Valenzuela-Díaz, F. R. Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. J. Cerâmica 2008; 54: 213–226.

    Google Scholar 

  23. Paiva LB, Morales AR, Valenzuela-Díaz FR. Review article — Organoclays: Properties, preparation and applications. J. Applied Clay Science 2008; 42: 8–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Machado, M. et al. (2015). Influence of Clay Exfoliation on the Properties of Evoh/Clay Flexible Films. In: Carpenter, J.S., et al. Characterization of Minerals, Metals, and Materials 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-48191-3_34

Download citation

Publish with us

Policies and ethics