Comparison of Various Methods for Modeling the Metal-Bath Interface

  • Dagoberto S. Severo
  • Vanderlei Gusberti
  • André F. Schneider
  • Elton C. V. Pinto
  • Vinko Potocnik


The correct evaluation of the stationary metal-bath interface in aluminum reduction cells is still a source of discussion and controversy. The objective of this paper is to present some calculations of the interface performed by different methods, used in software packages and to compare them with measured metal-bath interface profile in a real cell. Our comparison includes Shallow Layer approach and 3D multiphase methods, such as: homogeneous and inhomogeneous volume of fluid (VOF) as well as floating grid method. Different boundary conditions on the top of bath channels are tested in VOF methods. Finally, a simple generic magnetic field and vertical current density are proposed for software benchmarking of this problem.


Aluminum reduction Magnetohydrodynamics Metal-bath interface Numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Givry, «Les effets Magnétiques dans les Cuves ďelectrolyse ďaluminium», La Metallurgia Italiana n.8, (1960), 503–509.Google Scholar
  2. 2.
    J.P. Givry, “Computer Calculation of Magnetic Effects in the Bath of Aluminum Cells”, Transactions of the Metallurgical Society of AIME- Volume 239 (AGO/1967), 1161–1166.Google Scholar
  3. 3.
    R. Moreau and J.W. Evans, “An Analysis of the Hydrodynamic of Aluminum Reduction Cells”, Journal of Electrochemical Society — Volume 131/No10 (OCT/1984), 2251–2259.CrossRefGoogle Scholar
  4. 4.
    G.E. da Mota and J.E.M. Blasques, “Process Improvements to Raise the Line Current at ALBRAS”, Light Metals, (2004), 185–190.Google Scholar
  5. 5.
    V. Potočnik, “Modeling of Metal-Bath Interface Waves in Hall-Heroult Cells Using ESTER/PHOEMCS”, Light Metals, (1989), 227–235.Google Scholar
  6. 6.
    Ch. Droste, “PHOENICS’ Applications in the Aluminium Smelting Industry”, The PHOENICS Journal-Computational Fluid Dynamics and its Applications, Volume 13 No.1 (June 2000), 70–81. Google Scholar
  7. 7.
    D. S. Severe, A. F. Schneider, E. C. V. Pinto, V. Gusberti, V. Potocnik, “Modeling Magnetohydrodynamics Of Aluminum Electrolysis Cells With Ansys And CFX”, Light Metals, (2005), 475–480.Google Scholar
  8. 8.
    O. Zikanov, H. Sun and D. P. Ziegler, “Shallow Water Model of Flows in Hall-Héroult Cells,” Light Metals, (2004), 445–451.Google Scholar
  9. 9.
    CFX 10.0 USER MANUAL- Solver Modelling, Multiphase Flow Modelling.Google Scholar
  10. 10.
    V. Potočnik and F. Laroche, “Comparison of Measured and Calculated Metal Pad Velocities for Different Prebake Cell Designs”, Light Metals, (2001), 419–425.Google Scholar
  11. 11.
    S. C. Kassinos, B. Knaepen, D. Carati, “MHD Turbulence in the Presence of a Strong Magnetic Field”, Center for Turbulence Research-Procedings of the Summer Program 2002, 191–201.Google Scholar
  12. 12.
    H. K. Versteeg and W. Malalasekera, “An Introduction to Computational Fluid Dynamics: The Finite Volume Method”, Pearson-Prentice Hall, 1995, ISBN 0-582-21884-5.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Dagoberto S. Severo
    • 1
  • Vanderlei Gusberti
    • 1
  • André F. Schneider
    • 1
  • Elton C. V. Pinto
    • 1
  • Vinko Potocnik
    • 2
  1. 1.PCE Engenharia S/S LtdaPorto Alegre, RSBrazil
  2. 2.Vinko Potocnik ConsultantJonquièreCanada

Personalised recommendations