A Modelling Approach to Estimate Bath and Metal Heat Transfer Coefficients

  • Dagoberto S. Severo
  • Vanderlei Gusberti

Abstract

Heat transfer coefficients between the cell cavity and the liquids (bath and metal) are important parameters for correct thermal calculations of the electrolytic cell behavior. Traditionally, the wall heat transfer coefficients are adjusted with help of thermal measurements done in operating cells. However, this procedure cannot be done in a new project. The present work aims to show numerical procedures for estimation of the local heat transfer coefficients, at the liquid bath and metal regions, independent of previous measurements. The influence of interpolar distance, anode-ledge channel width, interanode channels width, anode width, anode slots and anode immersion depth as well the anode current density on heat transfer coefficients are investigated by numerical experiments.

Keywords

Aluminum reduction Heat transfer coefficient Bubble driven flow Magnetohydrodynamics Numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Haupin, “Calculating Thickness of Containing Walls Frozen from Melt”, Light Metals, (1971), 188–194Google Scholar
  2. 2.
    A. Solheim, J. Thonstad, “Heat Transfer Coefficients Between Bath and Side Ledge. Model Experiments”, Light Metals, (1983), 425–435.Google Scholar
  3. 3.
    V. A. Khokhlov, E. S. Filatov, A. Solheim, J. Thonstad, “Thermal Conductivity in Cryolitic Melts- New Data and its Influence on Heat Transfer in Aluminium Cells”, Light Metals, (1998), 501–506.Google Scholar
  4. 4.
    D. S. Severe, V. Gusberti, E. C. V. Pinto, R. R. Moura, “Modeling the Bubble Driven Flow in the Electrolyte as a Tool for Slotted Anode Design Improvement”, Light Metals, (2007), 287–292.Google Scholar
  5. 5.
    M.A Cooksey and W. Yang, “PIV Measurements on Physical Models of Aluminium Reduction Cells”, Light Metals, (2006), 359–365.Google Scholar
  6. 6.
    W.M. Rohsenow; J. P. Hartnett; Y. I. Cho, Handbook of Heat Transfer, McGraw-Hill, 3rd Edition, Chapter 5-pg 23Google Scholar
  7. 7.
    T. Hansen, A. Solheim, K. Nisancioglu, “A Hydrodynamic Model for the Bath Film Between Metal and Side Ledge in Aluminum Cells”, Light Metals, (1996), 351–356.Google Scholar
  8. 8.
    A. Solheim, “Towards a Proper Understanding of Sideledge Facing the Metal in Aluminum Cells?”, Light Metals, (2006), 439–443.Google Scholar
  9. 9.
    A. Dupuis, V. Bojarevics, “Weakly Coupled Thermo-Electric and MHD Mathematical Models of an Aluminum Electrolysis cell”, Light Metals, (2005), 449–454.Google Scholar
  10. 10.
    Y. Safa, “Simulation Numérique Des Phénomènes Thermiques Et Magnéthohydrodynamiques Dans Une Cellule De Hall-Héroult”, Docteur Thesis N°3185 — École Polytechnique Fédérale de Lausanne, (Switzerland — 2005).Google Scholar
  11. 11.
    K.C. Mills; Recommended Values of Thermophysical Properties for Selected Commercial Alloys, The materials Information Society- Woodhead Publishing Ltd, Cambridge-England, pg 19–25.Google Scholar
  12. 12.
    B.A. Kader, Temperature and Concentration Profiles in Fully Turbulent Boundary Layers”, International Journal of Heat and Mass Transfer, 24(9): 1541–1544, 1981.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Dagoberto S. Severo
    • 1
  • Vanderlei Gusberti
    • 1
  1. 1.PCE Engenharia S/S LtdaRua Caeté 162Porto Alegre RSBrazil

Personalised recommendations