Advertisement

Current Efficiency in Prebake and Søderberg Cells

  • G. P. Tarcy
  • K. Tørklep

Abstract

An isotope dilution technique was used to study 24 h current efficiencies in 22 semi-randomly selected prebake pots and 21 randomly selected Søderberg pots at the Elkem smelters. A total of 110 measurements were made and compared with the 1128 current efficiency measurements made on Alcoa prebake pots using Alcoa’s silver dilution technique. Results are discussed with emphasis on similarities and dissimilarities in prebake and Søderberg pots. Some theoretical proposals are made regarding the similarities and differences.

Results for the prebake pots confirm the basic conclusions from the Alcoa studies including the relative importance of bath chemistry compared to noise (instability) and the impact of low alumina operation on current efficiency. Measurements of 24 h current efficiencies for Søderberg pots are scarce to non-existent. Only temperature and aluminium fluoride have similar influences in the two pot technologies.

Keywords

Current efficiency Soderberg Prebake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    T. B. Pedersen, Light Metals, 2001, 489–495.Google Scholar
  2. 2).
    G. P. Tarcy and D. R. DeCapite, Light Metals, (1990) 275–283.Google Scholar
  3. 3).
    B. Berge, K. Grjotheim, C. Krohn, R. Naeumann and K. Tørklep, Light Metals, 1975, 37–47.Google Scholar
  4. 4).
    B. Berge, K. Grjotheim, C. Krohn, R. Naeumann and K. Tørklep, Met. Trans., vol. 2, 1971, 199–204.CrossRefGoogle Scholar
  5. 5).
    B. Berge, K. Grjotheim, C. Krohn, R. Naeumann and K. Tørklep, Met. Trans., vol. 4, 1973, 1945–1952.CrossRefGoogle Scholar
  6. 6).
    G. L. Fredrickson, Light Metals, 2003, 299–314Google Scholar
  7. 7).
    X. Wang, R. D. Peterson and N. Richards, Light Metals, 1991, 323–330.Google Scholar
  8. 8).
    A. Solheim, S. Rolseth, E. Skybakmoen, L. Støen, Å. Sterten, and T. Store, Light Metals, 1995, 451–460.Google Scholar
  9. 9).
    H. Kvande, Light Metals, 1989, 261–268.Google Scholar
  10. 10).
    R. A. Lewis, J. Metals, vol 19, 1967, 30–36.Google Scholar
  11. 11).
    P.A. Solli, T. Eggen, E. Skybakmoen and Å. Sterten, J. Appl. Electrochem., 1997, vol 27, 939–946.CrossRefGoogle Scholar
  12. 12).
    M. J. Leroy, T. Pelekis and J.-M. Jolas, Light Metals, 1987, 291–294.Google Scholar
  13. 13).
    L. I. Kiss, S. Poncsak, Light Metals, 2002, 217–223Google Scholar
  14. 14).
    G. P. Tarcy and J. Sorenson, Light Metals, 1991, 453–459.Google Scholar
  15. 15).
    G. P. Tarcy, Proceedings of the Fifth Australasian Aluminium Smelter Workshop, 1995, 139Google Scholar
  16. 16).
    G. P. Tarcy, Proceedings of the Seventh Australasian Aluminium Smelter Workshop, 2001Google Scholar
  17. 17).
    G. P. Tarcy, TMS Industrial Aluminum Electrolysis, 2003, 12Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • G. P. Tarcy
    • 1
  • K. Tørklep
    • 2
  1. 1.Alcoa Technical CenterAlcoa CenterUSA
  2. 2.Elkem Aluminium ResearchKristiansandNorway

Personalised recommendations