Influence of Reinforcement Content on Tensile Response and Fracture Behavior of an Aluminum Alloy Metal Matrix Composite

  • K. Manigandan
  • T. S. Srivatsan
  • Zhencheng Ren
  • Jingyi Zhao

Abstract

In this paper, the results of a study that examined the intrinsic influence of ceramic particulate reinforcements on tensile deformation and fracture behavior of aluminum alloy 2014 is presented and discussed. The candidate aluminum alloy was reinforced with two volume fractions of the alumina (Al2O3) particulates. Influence of particulate reinforcement on microstructural development is highlighted. Samples of the aluminum alloy-based metal matrix composite were deformed in uniaxial tension. The influence of nature of loading and intrinsic microstructural effects on stress versus strain response, mechanical properties, deformation and final fracture behavior are neatly elaborated and discussed in light of intrinsic microstructural effects, deformation characteristics of the microstructural constituents and nature of loading.

Keywords

aluminum alloy ceramic particle reinforcement metal-matrix composite microstructure tensile response fracture behavior mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. F. Hasson and C. R. Crowe: in ‘Strength of Metals and Alloys, ICSMA 7’ Pergamon Press, Oxford, 1985, pp.1515–1520Google Scholar
  2. 2.
    S. G. Fishman: ‘Role of Interfaces on Material Damping’ ASM, Materials Park, OH, 1985, pp. 33–41.Google Scholar
  3. 3.
    P. K. Liaw, H. G. Greggi, and W. A. Logsdon: Materials Science Letters, 1987, 22, 1613Google Scholar
  4. 4.
    J. F. Mandell, K.C. Hong, and D. H. Grande: Ceramic Engineering Science, Proc. 1987, 8, 937Google Scholar
  5. 5.
    D. H. Grande, J. F. Mandell, and K. C. J. Hong, Materials Science, 1988, 23, 311CrossRefGoogle Scholar
  6. 6.
    P. Niskanen, and W. R. Mohn:. Advances in Materials Processing, 1988, 133, 39Google Scholar
  7. 7.
    M. S. Zedalis, J. D. Bryant, P. S. Gilman, and S. K. Das: Journal of Metals, 1991, p. 29Google Scholar
  8. 8.
    Nair, S.V., Tien, J.K. and Bates, R.C. International Meals. Reviews. 1985, 30, 285Google Scholar
  9. 9.
    T. S. Srivatsan, T. S. Sudarshan and E. J.Lavernia: Progress in Materials Science, An International Review Journal, Vol. 39 (4/5), 1995, pp. 317–325.CrossRefGoogle Scholar
  10. 10.
    S. G. Fishman: Metal Matrix Composite Requirement: More Reliable Mechanical Properties Data, MMCIAC, Current Highlights, Vol. 1, May 1981.Google Scholar
  11. 11.
    W.C. Harrigan in Metal Matrix Composites (editors: R.JK. Everett and R. J. Arsenault) Academic Press, London, pp. 1–15, 1991.Google Scholar
  12. 12.
    R. J. Arsenault: Materials Science and Engineering, Vol. 64, 1984, pp. 171–181.CrossRefGoogle Scholar
  13. 13.
    W. R. East: Materials Engineering, March 1988, p. 33.Google Scholar
  14. 14.
    R. DeMeis: Aerospace America, March 1989, p. 26Google Scholar
  15. 15.
    T. C. Willis: Metals and Materials, August 1988, p. 485Google Scholar
  16. 16.
    W. H. Hunt, Jr., C. R. Cook, and R. R. Sawtell: “Cost Effective High Performance Powder Metallurgy Aluminum Matrix Composites for Automotive Applications,’ SAE Technical Paper Series 910834, February 1991, Warrendale, PAGoogle Scholar
  17. 17.
    W. H. Hunt, Jr., Paper presented at the International Conference on PM Aerospace Materials, November 1991, Lausanne, SwitzerlandGoogle Scholar
  18. 18.
    S. Norose, T. Sasdafa, and M. Okabe: in ‘Proceedings 28th Japan Congress on Materials Research’, 1985, pp. 231–241.Google Scholar
  19. 19.
    W.L. Phillips: in Proceedings of Conf. on Composite Materials’ (Editor: B. Noton), Metallurgical Society of AIME, New York, 1978, pp. 567–577Google Scholar
  20. 20.
    T. G. Nieh: Metallurgical Transactions, 1984, 15A, p. 139CrossRefGoogle Scholar
  21. 21.
    G. Gould: in ‘Proc. Third Int. Conf. on Isostatic Pressing’, London, 1986, vol. 1, p. 10.Google Scholar
  22. 22.
    D. F. Hasson, C. R. Crowe, J. S. Ahearn, and D. S. Cooke: ‘Failure Mechanisms in High Performance Materials’, Cambridge University Press, Cambridge, 1985, pp. 147–156Google Scholar
  23. 23.
    Y. Sugimura, and S. Suresh: Metallurgical Transactions, 1992, 23A, p. 2231CrossRefGoogle Scholar
  24. 24.
    P.K. Liaw abd W.A. Logsdon: Engineering Fracture Mechanics, Vol. 24, 1986, pp. 737–745.CrossRefGoogle Scholar
  25. 25.
    J. K. Shang and R. O. Ritchie: Metallurgical Transactions, Vol. 20A, 1989, pp. 897–908.CrossRefGoogle Scholar
  26. 26.
    J. K. Shang and R. O. Ritchie: Acta Metallurgica, 1989, Vol. 37, pp. 2267–2278.CrossRefGoogle Scholar
  27. 27.
    J. J. Lewandowski, C. Liu and W. H. Hunt, Jr.: in Interfacial Phenomenon in Composites: Processing, Characterization and Mechanical Properties, TMS, AIME, Warrendale, PA, 1988.Google Scholar
  28. 28.
    J. J. Lewamdowski, C. Liu and W. H. Hunt, Jr.: Materials Science and Engineering, Vol. 107A, 1989, pp. 49–55.CrossRefGoogle Scholar
  29. 29.
    J. J. Lewandowski, C. Liu and W. H. hunt, Jr.: in Powder Metallurgy Composites (editors: P. Kumar, K. Vedula and A.M. Ritter), TMS-AIME, Warrendale, PA, 1989.Google Scholar
  30. 30.
    M. Manoharan and J. J. Lewandowski: Scripta Metallurgica, Vol. 23, 1989, pp. 301–305.CrossRefGoogle Scholar
  31. 31.
    M. Manoharan and J. J. Lewandowski: Acta Metallurgica, Vol. 38 (3), 1990, pp. 489–496.CrossRefGoogle Scholar
  32. 32.
    D. L. Davidson: Engineering Fracture Mechanics, Vol. 33, 1989, pp. 965–977.CrossRefGoogle Scholar
  33. 33.
    T.S. Srivatsan: Journal of Materials Science, 1996, vol. 31, pp. 1375–88.CrossRefGoogle Scholar
  34. 34.
    T.S. Srivatsan: “The Cyclic Fatigue and Fracture Behavior of Al2O3 Particulate- Reinforced 2014 Aluminum Alloy Metal-Matrix Compos2267-Google Scholar
  35. 35.
    F.A. McClintock: Ductility, ASM International, Metals Park, Cleveland, OH, 1968, pp. 256–61.Google Scholar
  36. 36.
    R.H. Van Stone, T.B. Cox, J.R. Low, Jr., and J.A. Psioda: International Metals Reviews, 1975, vol. 30, pp. 157–71.Google Scholar
  37. 37.
    R.J. Arsenault, L. Wang, and C.R. Feng: Acta Metallurgica Materialia., 1991.Google Scholar
  38. 38.
    A.S. Argon, J. Im, and R. Safoglu: Metallurgical Transactions A, 1975, Vol. 6A, pp. 825–837.CrossRefGoogle Scholar
  39. 39.
    T.S. Srivatsan: International Journal of Fatigue, 1995, vol. 17 (3), pp. 183–99.CrossRefGoogle Scholar
  40. 40.
    D.J. Lloyd: Acta Metallurgica, 1991, vol. 39 (1), pp. 59–70.CrossRefGoogle Scholar
  41. 41.
    E. Hochreiter, M. Panzenbock, and F. Jeglitsch: International Journal of Fatigue, 1993, vol. 15 (6), p. 493.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2015

Authors and Affiliations

  • K. Manigandan
    • 1
  • T. S. Srivatsan
    • 1
  • Zhencheng Ren
    • 1
  • Jingyi Zhao
    • 1
  1. 1.Division of Materials Science and Engineering Department of Mechanical EngineeringThe University of AkronAkronUSA

Personalised recommendations