Spark Plasma Sintering (SPS) of Carbon Nanotube (CNT) / Graphene Nanoplatelet (GNP)-Nickel Nanocomposites: Structure Property Analysis

  • Tushar Borkar
  • Hamidreza Mohseni
  • Junyeon Hwang
  • Thomas Scharf
  • Jaimie Tiley
  • Soon H. Hong
  • Rajarshi Banerjee

Abstract

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The CNT/Ni (DM) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of nickel ∼ 160 MPa) and an elongation to failure ∼ 30%. In contrast, CNT/Ni (MLM) exhibited substantially higher tensile yield strength (∼ 690 MPa) but limited ductility with an elongation to failure ∼ 8%. GNP/Nickel nanocomposites were also processed via DM followed by SPS consolidation. The Ni-1vol%GNP nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (∼ 40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface effectively transfers stress across metal-GNP interface during tensile deformation.

Keywords

Spark plasma sintering (SPS) Molecular level mixing (MLM) Carbon nanotube (CNT) Graphene nanoplatelet (GNP) Tensile strength Interface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Harris, “Carbon nanotube composites,” International Material Reviews, 49 (2004), 31 – 43.CrossRefGoogle Scholar
  2. 2.
    S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Materials Science and Engineering: R, 74 (2013), 281–350.CrossRefGoogle Scholar
  3. 3.
    S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354 (1991) 56–58.CrossRefGoogle Scholar
  4. 4.
    S. Iijima and T. Ichlhashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363 (1993) 603–605.CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of single-walled carbon nanotubes and carbide nanorods,” Science, 285 (1999) 1719–1722.CrossRefGoogle Scholar
  6. 6.
    J. Liao, M. Tan, and I. Sridhar, “Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites,” Material & Design, 31 (2010) S96–S100.CrossRefGoogle Scholar
  7. 7.
    K. Chu, C. Jia, L. Jiang, and W. Li, “Improvement of interface and mechanical properties in carbon nanotube reinforced Cu-Cr matrix composites,” Material & Design, 45 (2013) 407–411.CrossRefGoogle Scholar
  8. 8.
    Q. Li, A. Vierecki, C. Rottmair, and R. Singer, “Improved processing of carbon nanotube/magnesium alloy composites,” Composites Science and Technology, 69 (1993) 1193–1199.CrossRefGoogle Scholar
  9. 9.
    C. Guiderdoni, C. Estournes, A. Peigney, A. Weibel, V. Turq, and C. Laurent, “The preparation of double-walled carbon nanotube/Cu composites by spark plasma sintering, and their hardness and friction properties,” Carbon, 49 (2011) 4535–4543.CrossRefGoogle Scholar
  10. 10.
    A. Esawi, E. Morsi, A. Sayed, A. Gawad, and P. Borah, “Fabrication and properties of dispersed carbon nanotube-aluminum composites,” Materials Science and Engineering A, 508 (2009) 167–173.CrossRefGoogle Scholar
  11. 11.
    D. Lahiri, S. Bakshi, A. Keshri, Y. Liu, and A. Agarwal, “Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites,” Materials Science and Engineering A, 523 (2009) 263–270.CrossRefGoogle Scholar
  12. 12.
    H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawassaki, “Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites,” Carbon, 47 (2009) 570–577.CrossRefGoogle Scholar
  13. 13.
    S. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Holler, U. Wienecke, S. Roth, and H. Frecht, “Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites,” Composites Science and Technology, 70 (2010) 2253–2257.CrossRefGoogle Scholar
  14. 14.
    S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki, and T. Tsukada, Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites, Scripta Materialia, 63 (2011) 375–378.CrossRefGoogle Scholar
  15. 15.
    S. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites- a review,” International Material Reviews, 55 (2010) 41–64.CrossRefGoogle Scholar
  16. 16.
    A.R.P. Singh, J.Y. Hwang, T. Scharf, J. Tiley, and R. Banerjee, “Bulk nickel-carbon nanotube nanocomposites by laser deposition,” Materials Science & Technology, 26 (2010) 1393–1400.CrossRefGoogle Scholar
  17. 17.
    C. Wei, F. Xue, and S. Jiehe, “Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering,” Rare Metals 31 (2012) 48–50.CrossRefGoogle Scholar
  18. 18.
    R. George, K. Kashyap, R. Rahul, and S. Yamdagni, “Strengthening in carbon nanotube/aluminum (CNT/Al) composites,” Scripta Materialia, 53 (2005) 1159–1163.CrossRefGoogle Scholar
  19. 19.
    K. Kim, S. Cha, S. Hong, and S. Hong, “Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites,” Materials Science and Engineering A, 430 (2006) 27–33.CrossRefGoogle Scholar
  20. 20.
    T. Scharf, A. Niera, J. Hwang, J. Tiley, and R. Banerjee, “Self-lubricating carbon nanotube reinforced nickel matrix composites,” Journal of Applied Physics, 106 (2009) 013508–1–7.CrossRefGoogle Scholar
  21. 21.
    K. Kim, J. Eckert, S. Menzel, T. Gemming, and S. Hong, “Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites,” Applied Physics Letter, 92 (2008) 121901–1–3.Google Scholar
  22. 22.
    S. Yamanaka, R. Gonda, A. Kawasaki, H. Sakamoto, Y. Mekuchi, M. Kuno, and T. Tsukada, “Fabrication and thermal properties of carbon nanotube/nickel composite by spark plasma sintering method,” Materials Transactions, 48(9) (2007) 2506–2512.CrossRefGoogle Scholar
  23. 23.
    A. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites,” Composites Science and Technology, 70 (2010) 2237–2241.CrossRefGoogle Scholar
  24. 24.
    S. Cha, K. Kim, S. Arshad, C. Mo, and S. Hong, “Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing,” Advanced Materials, 17 (2005) 1377–1381.CrossRefGoogle Scholar
  25. 25.
    J.Y. Hwang, B. Lim, J. Tiley, R. Banerjee, and S. Hong, “Interface analysis of ultra-high strength carbon nanotube/nickel composites processed by molecular level mixing,” Carbon, 57 (2013) 282–287.CrossRefGoogle Scholar
  26. 26.
    S. Cha, K. Kim, H. Lee, C. Mo, and S. Hong, “Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process,” Scripta Materialia, 53 (2005) 793–797.CrossRefGoogle Scholar
  27. 27.
    K. Kim, S. Cha, and S. Hong, “Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites,” Materials Science and Engineering A, 449 (2007) 46–50.CrossRefGoogle Scholar
  28. 28.
    K. Kim, J. Eckert, G. Liu, J. Park, B. Kim, and S. Hong, “Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing,” Scripta Materialia, 64(2) (2011) 181–184.CrossRefGoogle Scholar
  29. 29.
    S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Materials Science and Engineering: R: Reports, 74 (2013) 281–350.CrossRefGoogle Scholar
  30. 30.
    M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content,” ACS Nano, 3 (2009) 3884–3890.CrossRefGoogle Scholar
  31. 31.
    D. Kuang, L. Xu, L. Liu, and W. Hu, “Graphene-nickel composites,” Applied Surface Science, 273 (2013) 484–490.CrossRefGoogle Scholar
  32. 32.
    J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, “Reinforcement with graphene nanosheets in aluminum matrix composites,” Scripta Materialia, 66 (2012) 594–597.CrossRefGoogle Scholar
  33. 33.
    L.-Y. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J.-Q. Xu, H. Choi, “Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites,” Scripta Materialia, 67 (2012) 29–32.CrossRefGoogle Scholar
  34. 34.
    F. H. Latief and E.-S. M. Sherif, “Effects of sintering temperature and graphite addition on the mechanical properties of aluminum,” Journal of Industrial and Engineering Chemistry, 18 (2012) 2129–2134.CrossRefGoogle Scholar
  35. 35.
    D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, and K. I. Bolotin, “Graphene: corrosion-inhibiting coating,” ACS nano, 6 (2012) 1102–1108.CrossRefGoogle Scholar
  36. 36.
    S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, “Graphene-based composite materials,” Nature, 442 (2006) 282–286.CrossRefGoogle Scholar
  37. 37.
    S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, “Graphene-aluminum nanocomposites,” Materials Science and Engineering : A, 528 (2011) 7933–7937.CrossRefGoogle Scholar
  38. 38.
    J. Hwang, T. Yoon, S. H. Jin, J. Lee, T. S. Kim, S. H. Hong, “Enhanced Mechanical Properties of Graphene/Copper Nanocomposites Using a Molecular- Level Mixing Process,” Advanced Materials, 25 (46) (2013) 6724–6729.CrossRefGoogle Scholar
  39. 39.
    N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, “Exploring graphene as a corrosion protection barrier,” Corrosion Science, 56 (2012) 1–4.CrossRefGoogle Scholar
  40. 40.
    K. Rajkumar and S. Aravindan, “Tribological behavior of microwave processed coppernanographite composites,” Tribology International, 57 (2012) 282–296.CrossRefGoogle Scholar
  41. 41.
    F. H. Latief, E.-S. M. Sherif, A. A. Almajid, and H. Junaedi, “Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior,” Journal of Analytical and Applied Pyrolysis, 92 (2011) 485–492,.CrossRefGoogle Scholar
  42. 42.
    K. Jagannadham, “Electrical conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets,” Journal of Vacuum. Science & Technology B: Microelectronics and Nanometer Structures, 30 (2012) 03D109–03D109–9.CrossRefGoogle Scholar
  43. 43.
    Ramanathan T, A. A. Abdala, Stankovich, D. A. Dikin, M. Herrera Alonso, R. D. Piner, “Functionalized graphene sheets for polymer nanocomposites,” Nature Nanotechnology, 3(6) (2008) 327–331.CrossRefGoogle Scholar
  44. 44.
    P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, “Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties,” Polymer, 52 (2011) 4001–4010.CrossRefGoogle Scholar
  45. 45.
    S. H. Song, K. H. Park, B. H. Kim, Y. W. Choi, G. H. Jun, D. J. Lee, et al., “Enhanced Thermal Conductivity of Epoxy-Graphene Composites by Using Non-Oxidized Graphene Flakes with Non-Covalent Functionalization,” Advanced Materials, 25 (2013) 732 – 737.CrossRefGoogle Scholar
  46. 46.
    D. Lee, S. H. Song, J. Hwang, S. H. Jin, K. H. Park, B. H. Kim, “Enhanced Mechanical Properties of Epoxy Nanocomposites by Mixing Noncovalently Functionalized Boron Nitride Nanoflakes,” Small, 9 (2013) 2602–2610.CrossRefGoogle Scholar
  47. 47.
    T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T.-S. Kim, and B. J. Cho, “Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process,” Nano Letters, 12 (2012) 1448–1452.CrossRefGoogle Scholar
  48. 48.
    S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Materials Science and Engineering: R: Reports, 74 (2013) 281–350.CrossRefGoogle Scholar
  49. 49.
    M. Tokita, “Mechanism of spark plasma sintering,” in Proceeding of NEDO International Symposium on Functionally Graded Materials, 22 (1999) 1–13.Google Scholar
  50. 50.
    S. Somiya, Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties: Access Online via Elsevier, 2013.Google Scholar
  51. 51.
    Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric current activation of sintering: a review of the pulsed electric current sintering process,” Journal of the American Ceramic Society, 94 (2011) 1–19.CrossRefGoogle Scholar
  52. 52.
    Z A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method,” Journal of Materials Science, 41 (2006) 763–777.CrossRefGoogle Scholar
  53. 53.
    R. Orru, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Materials Science and Engineering: R: Reports, 63 (2009) 127–287.CrossRefGoogle Scholar
  54. 54.
    V. Mamedov, “Spark plasma sintering as advanced PM sintering method,” Powder Metallurgy, 45 (2002) 322–328.CrossRefGoogle Scholar
  55. 55.
    X. Song, X. Liu, and J. Zhang, “Neck Formation and Self- Adjusting Mechanism of Neck Growth of Conducting Powders in Spark Plasma Sintering,” Journal of the American Ceramic Society, 89 (2006) 494–500.CrossRefGoogle Scholar
  56. 56.
    M. Omori, “Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS),” Materials Science and Engineering : A, 287 (2000) 183–188.CrossRefGoogle Scholar
  57. 57.
    W. Yucheng and F. Zhengyi, “Study of temperature field in spark plasma sintering,” Materials Science and Engineering: B, 90 (2002) 34–37.CrossRefGoogle Scholar
  58. 58.
    J. E. Garay, “Current-activated, pressure-assisted densification of materials,” Annual Review of Materials Research, 40 (2010) 445 – 468.CrossRefGoogle Scholar
  59. 59.
    M. Suárez, A. Fernández, J. L. Menéndez, R. Torrecillas, H. U. Kessel, J. Hennicke, “Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials,” 2013.Google Scholar
  60. 60.
    T. Borkar and R. Banerjee. “Influence of spark plasma sintering (SPS) processing Parameters on microstructure and mechanical Properties of nickel.” Materials Science and Engineering: A, 618 (17) (2014) 176–181.CrossRefGoogle Scholar
  61. 61.
    T. Borkar, S. Nag, Y. Ren, J. Tiley, and R. Banerjee, “Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites.” Journal of Alloys and Compounds, 617 (2014) 933–945.CrossRefGoogle Scholar
  62. 62.
    T. Borkar, J. Hwang, J. Y. Hwang, T. W. Scharf, J. Tiley, S. H. Hong, & R. Banerjee, “Strength versus ductility in carbon nanotube reinforced nickel matrix nanocomposites,” Journal of Materials Research, 29(06) (2014) 761–769.CrossRefGoogle Scholar
  63. 63.
    T. Borkar, H. Mohseni, J. Y. Hwang, T. W. Scharf, J. Tiley, S. H. Hong, & R. Banerjee, “Excellent strength-ductility combination in Nickel-Graphite nanoplatelet (GNP/Ni) nanocomposites,” Carbon (2014).Google Scholar
  64. 64.
    T. Borkar and S. Harimkar, “Microstructure and wear behavior of pulse electrodeposited CNT/Ni composite coatings,” Surface Engineering, 27(7) (2011) 524–530.CrossRefGoogle Scholar
  65. 65.
    T. Borkar and S. Harimkar, “Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings,” Surface & Coatings Technology, 205 (17) (2011) 4124–4134.CrossRefGoogle Scholar
  66. 66.
    N. Krasilnikov, W. Lojkowski, Z. Pakiela, and R. Valiev, “Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation,” Materials Science and Engineering: A, 397 (2005) 330–337.CrossRefGoogle Scholar
  67. 67.
    T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, “Processing of carbon nanotube reinforced aluminum composite,” Journal of Materials Research, 13 (1998) 2445–2449.CrossRefGoogle Scholar
  68. 68.
    A. Esawi, M. Borady, “Carbon nanotube-reinforced aluminum strips,” Composites Science and Technology, 68 (2008) 486–492.CrossRefGoogle Scholar
  69. 69.
    S. Dong, J. Tu, X. Zhang, “An investigation of the sliding wear behavior of Cu-matrix composites reinforced by carbon nanotubes,” Materials Science and Engineering A, 313 (2001) 83–87.CrossRefGoogle Scholar
  70. 70.
    X. Chen, J. Xia, J. Peng, W. Li, S. Xie, “Carbon-nanotube metal-matrix composites prepared by electroless plating,” Composites Science and Technology, 60 (2000) 301–306.CrossRefGoogle Scholar
  71. 71.
    D. Nam, S. Cha, B. Lim, H. Park, D. Han, S. Hong, “Synergistic strengthening by load transfer mechanism and grain refinement CNT/Al-Cu composites,” Carbon, 50 (2012) 2417–2423.CrossRefGoogle Scholar
  72. 72.
    K. Kim, J. Eckert, J. Menzel, S. Gemming, S. Hong, “Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites,” Applied Physics Letters, 92 (12) (2008) 121901–1–3.CrossRefGoogle Scholar
  73. 73.
    Y. Jeong, S. Cha, K. Kim, K. Lee, C. Mo, S. Hong, “Synergistic strengthening effect of ultrafine grained metals reinforced with carbon nanotubes,” Small, 3 (2007) 840–844.CrossRefGoogle Scholar
  74. 74.
    Y. Tang, X. Yang, R. Wang, M. Li, “Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids,” Materials Science and Engineering A, 599 (2014) 247–254.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2015

Authors and Affiliations

  • Tushar Borkar
    • 1
  • Hamidreza Mohseni
    • 1
  • Junyeon Hwang
    • 2
  • Thomas Scharf
    • 1
  • Jaimie Tiley
    • 3
  • Soon H. Hong
    • 4
  • Rajarshi Banerjee
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Institute of Advanced Composite MaterialsKorea Institute of Science and TechnologyJeonbukKorea
  3. 3.Materials and Manufacturing DirectorateAir Force Research LaboratoryDaytonUSA
  4. 4.Department of Materials Science and EngineeringKorea Advance Institute of Science and TechnologyDaejeonKorea

Personalised recommendations