Effective Creep Response and Uniaxial Tension Behavior of Linear Visco-Elastic Polymer Composites

  • Tian Tang
  • Sergio D. Felicelli



A micromechanics model was developed to characterize the effective creep response and macroscopic stress-strain behavior of linear viscoelastic polymer composites. The linear viscoelastic behavior of polymer was modeled by hereditary integral. The rate-dependent uniaxial tension behavior of the polymer composites can be calculated using the effective creep compliance coefficients predicted by the proposed model through the hereditary integral for the composites. Numerical examples were used to demonstrate the capability of the proposed model. All calculations were accomplished in the time domain, hence the Laplace transform and inversion commonly used for linearly viscoelastic composites are not needed in this theory.


effective creep response macroscopic stress-strain behavior linear viscoelastic polymer composite Micromechanics VAMUCH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Raghavan, J. and Meshii, M. (1998). Creep of polymer composites. Composites Science and Technology, 57 (12): 1673–1688.CrossRefGoogle Scholar
  2. [2]
    Barbero, E. J. (1994). Construction: Applications and Design, Lubin’s Handbook of Composites, 2nd edn.Google Scholar
  3. [3].
    Nemat-Nasser, S. and Hori, M. (1993). Micromechanics: overall properties of heterogeneous materials. Amsterdam: Elsevier Science Publishers, Amsterdam.Google Scholar
  4. [4].
    Hashin, Z. (1983). Analysis of composite materials-a survey. Journal of Applied Mechanics, 105:481–504.CrossRefGoogle Scholar
  5. [5].
    Christensen, R. M. (1979). Mechanics of composite materials. Dover Publications, Inc. Mineola, New York.Google Scholar
  6. [6].
    Barbero, E. J. and Luciano, R. (1995). Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers, International Journal of Solids and Structures, 32 (13): 1859–1872.CrossRefGoogle Scholar
  7. [7].
    Yancey, R. N. and Pindera, M-J. (1990). Micromechanical analysis of the creep response of unidirectional composites, Journal of Engineering Materials and Technology, 112: 157–163.CrossRefGoogle Scholar
  8. [8]
    Li, K, Gao, X. L., and Roy, A. K. (2006). Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mechanics of Advanced Materials and Structures, 13: 317–328.CrossRefGoogle Scholar
  9. [9]
    Wang, Y. M. and Weng, G. J. (1992). The influence of inclusion shape on the overall viscoelastic behavior of composites, Journal of Applied Mechanics, Trans. ASME, 112: 157–163.Google Scholar
  10. [10]
    Haasemann, G. and Ulbricht, V. (2009). Numerical evaluation of the viscoelastic and viscoplastic behavior of composites, Tchnishe Mechanik, 30 (1–3): 122–135.Google Scholar
  11. [11]
    Megnis, M., Varna, L, Allen, D. H., and Holmberg, A. (2001). Micromechanical modeling of viscoelastic response of GMT composites, Journal of Composites Materials, 35: 849–882.CrossRefGoogle Scholar
  12. [12]
    Yancey, R. N. and Pindera, M.J. (1990). Micromechanical analysis of the creep response of unidirectional composites, Journal of Engineering Materials and Technology, 112:157–163.CrossRefGoogle Scholar
  13. [13]
    Brinson, L. C. and Lin, W. S. (2003). Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites, Composites Structures, 41:353–367.CrossRefGoogle Scholar
  14. [14]
    Fisher, F. T. and Brinson, L. C. (2003). Viscoelastic interphase in polymer-matrix composites: theoretical models and finite element analysis, Composites Science and Technology, 61:731–748.CrossRefGoogle Scholar
  15. [15]
    Mori, T. and Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21:571–574.CrossRefGoogle Scholar
  16. [16]
    Benveniste, Y. (1987). A new approach to the application of Mori-Tanka’s theory in composite materials, Mechanics of Materials, 6:147–157.CrossRefGoogle Scholar
  17. [17]
    Lahellec, N. and Suquet, P. (2007). Effective behavior of linear viscoelastic composites: A time-integration approach, International Journal of Solids and Structures, 44: 507–529.CrossRefGoogle Scholar
  18. [18]
    Naik, A., Abolfathi, N., Karami, G., and Ziejewski, M. (2008). Micromechanical viscoelastic characterization of fibrous composites, Journal of Composites Materials, 42: 1179–1204.CrossRefGoogle Scholar
  19. [19]
    Yu, W. and Tang, T. (2007). Variational Asymptotic Method for Unit Cell Homogenization of Periodically Heterogeneous Materials, International Journal of Solids and Structures, 44: 3738–3755.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2015

Authors and Affiliations

  • Tian Tang
    • 1
  • Sergio D. Felicelli
    • 1
  1. 1.Department of Mechanical EngineeringThe University of AkronAkronUSA

Personalised recommendations