Nanoparticulate Reinforced Aluminum Alloy Composites Produced by Powder Metallurgy Route

  • Kaspar Kallip
  • Lauri Kollo
  • Marc Leparoux
  • Christopher Bradbury


High energy planetary ball-milling was used to effectively disperse 3, 6 and 9 wt. % multiwall carbon nanotubes (MW-CNTs) into commercially available aluminum alloys (Al6061, AlMg5, S250 and S790). Composite bulks were manufactured by uniaxial hot pressing. For the Al6061- CNT composites, standard heat treatments (T4, T5 and T6) were performed and their influence on the structural evolution (grain coarsening, CNT reaction) and hardness was recorded. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Raman spectroscopy were used to characterize the produced composites. The study shows that CNTs can be effectively mixed with high-strength aluminum alloys. Up to 5 fold increase in hardness was achieved compared to unreinforced alloys ranging up to 390 HV20 for the S250 alloy with 6 wt. % of MW- CNTs. The applied standard heat treatments did not lead to any improvements of the mechanical properties. The developed nanocomposite materials could find applications where high hardness of aluminum is needed, or in functionally graded composites.


MMC CNT Powder Metallurgy Aluminum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Metal matrix composites” G. Ibe (Ed.), Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2003)Google Scholar
  2. 2.
    Suryanarayana, C., Nasser Al-Aqeeli. Progress in Materials Science 58, no. 4 (2013): 383–502.CrossRefGoogle Scholar
  3. 3.
    S. Iijima, Nature, 354 (1991), pp. 56–58CrossRefGoogle Scholar
  4. 4.
    R. George, K.T. Kashyap, R. Raw, S. Yamdagni, Scr. Mater., 53 (2005), pp. 1159–1163CrossRefGoogle Scholar
  5. 5.
    C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Mater. Sci. Eng., A, 444 (2007), pp. 138–145CrossRefGoogle Scholar
  6. 6.
    H. Kwon, A. Kawasaki, J. Nanosci. Nanotechnol., 9 (2009), pp. 6542–6548CrossRefGoogle Scholar
  7. 7.
    Choi, H. J., J. H. Shin, and D. H. Bae. Composites Part A: Applied Science and Manufacturing 43.7 (2012): 1061–1072.CrossRefGoogle Scholar
  8. 8.
    Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Composites Part A, 43.12, (2012), P 2161–2168,CrossRefGoogle Scholar
  9. 9.
    Esawi, A. M. K., Morsi, K., Sayed, A., Taher, M., & Lanka, S. (2010). Composites Science and Technology, 70(16), 2237–2241.CrossRefGoogle Scholar
  10. 10.
    Bradbury, C. R., Gomon, J. K., Kollo, L., Kwon, H., & Leparoux, M. (2014). Journal of Alloys and Compounds, 585, 362–367.CrossRefGoogle Scholar
  11. 11.
    Tessonnier, J. P., Rosenthal, D., Hansen, T. W., Hess, C., Schuster, M. E., Blume, R., Schlögl, R. (2009). Carbon, 47(7), 1779–1798.CrossRefGoogle Scholar
  12. 12.
    Kollo, L., Leparoux, M., Bradbury, C. R., Jäggi, C., Carreño-Morelli, E., & Rodríguez-Arbaizar, M. (2010. Journal of Alloys and Compounds, 489(2), 394–400.CrossRefGoogle Scholar
  13. 13.
    Handbook, ASM Speciality. “Aluminum and aluminum alloys.” ASM International (1993)Google Scholar
  14. 14.
    Lutterotti, L. (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(3), 334–340.Google Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2015

Authors and Affiliations

  • Kaspar Kallip
    • 1
    • 2
  • Lauri Kollo
    • 2
  • Marc Leparoux
    • 1
  • Christopher Bradbury
    • 1
  1. 1.EMPA Swiss Federal Laboratories for Materials Science and TechnologyThunSwitzerland
  2. 2.Tallinn University of TechnologyTallinnEstonia

Personalised recommendations