Metal Matrix Composites Directionally Solidified

  • Alicia Esther Ares
  • Carlos Enrique Schvezov

Abstract

The present work is focus on studying the dendritic solidification of metal matrix composites, MMCs, (using zinc-aluminum, ZA, alloys as matrix and the addition of SiC and Al2O3 particles). The compounds were obtained by as-cast solidification, under continuous stirring and in a second stage were directionally solidified in order to obtain different dendritic growth (columnar, equiaxed and columnar-to-equiaxed transition (CET)). The results in MMCs were compared with those obtained in directional solidification of ZA alloys, primarily with regard to structural parameters. The size and evolution of microstructure, according to the size of the MMCs particles and the variation of the thermal parameters was analyzing. In general it was found that the size of the microstructure (secondary dendritic spacing) decreases with the increase of particles in the matrix. When cooling rate increases, particle size decreases, and a higher cooling rate causes finer and more homogeneous dendrites Also, the segregation which was found in the matrix of the composites was significantly less than in the case of ZA alloys.

Keywords

Metal Matrix Composites Zinc-Aluminum Matrix Properties Characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Gupta, K. G. Satyanarayana and C. Materials, Symposium Review: Solidification Processing of MMCs, Journal of Materials Science, 58 (2006) 91–93.Google Scholar
  2. 2.
    D. Miracle, Metal Matrix Composites—From Science to Technological Significance, Composites Science and Technology, 65 (2005) 2526–2540.CrossRefGoogle Scholar
  3. 3.
    A. Evans, C. Marchi and A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey. Kluwer Academic Publisher, Dordrecht (2003).CrossRefGoogle Scholar
  4. 4.
    I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Particulate Reinforced Metal Matrix Composites. Journal of Materials Science, 26 (1991) 1137–1156.CrossRefGoogle Scholar
  5. 5.
    E. M. Agaliotis; M. R. Rosenberger; A. E. Ares and C. E. Schvezov, Modelling the Interaction of Particles with a Concave Solidifying Interface, MCWASP International Conference – Modeling of Casting, Welding and Advanced Solidification Processes (2009) 209–217.Google Scholar
  6. 6.
    E. M. Agaliotis; M. R. Rosenberger; A. E. Ares and C. E. Schvezov, Numerical Modeling of the Interaction between Foreign Particle and Solidifying Crystalline Interface, In: CFD Modeling and Simulation in Materials Processing, Editors: L. Nastac, L. Zhang, B. G. Thomas, A. Sabau, N. El-Kaddah, A. C. Powell, H. Combeau. John Wiley & Sons, Inc. (2012) p. 171–178.CrossRefGoogle Scholar
  7. 7.
    E. M. Agaliotis, M. R. Rosenberger, A. E. Ares y C. E. Schvezov, Analysis of the Interaction of Particles with a Non-Planar Solidifying Interface, TMS Light Metals, (2013) 823–827.Google Scholar
  8. 8.
    R. Yamanoglu, M. Zeren, R. M. German, Solidification Characteristics of Atomized AlCu4Mg1-SiC Composite Powders, J. Min. Metall. Sect. B-Metall. 48 (1) B (2012) 73–79.CrossRefGoogle Scholar
  9. 9.
    M. Sahoo; L. V. Whiting; D. W. G. White, Control of Underside Shrinkage in Zinc — Aluminum Foundry Alloys by the Addition of Trace Elements, AFS Transactions 93 (1985) 475–480.Google Scholar
  10. 10.
    P. P. Lee, T. Savaskan, E. Laufer, Wear resistance and microstructure of Zn–Al–Si and Zn–Al–Cu alloys, Wear 117 (1987) 79–89.CrossRefGoogle Scholar
  11. 11.
    S. Murphy, Solid-phase reactions in the low-copper part of the Al–Cu–Zn system, Z. Metallkde 71 (1980) 96–102.Google Scholar
  12. 12.
    J.A: Cornie, R. Guerriero, L. Meregalli and I. Tangerini, in Proceedings of Cast Reinforced Metal Composites Conference, Chicago, 24–30 September 1988, edited by S. G. Fishman and A. K. Dhingra, p. 155.Google Scholar
  13. 13.
    N. Karni, G. B. Barkay; M. Bamberger, Structure and properties of metal-matrix composite, Journal of Materials Science Letters 13 (1994) 541–544.CrossRefGoogle Scholar
  14. 14.
    S.C. Tjong and F. Chen, Wear Behavior of As-Cast ZnAl27/SiC Particulate Metal-Matrix Composites under Lubricated Sliding Condition, Metallurgical and Transactions 28A (1997) 1951–1955.CrossRefGoogle Scholar
  15. 15.
    H. X. Zhu and S. K. Liu, Mechanical Properties of Squeeze Cast Zinc Alloy Matrix Composites Containing α-Alumina Fibers, Composites 24 (1993) 437–442.CrossRefGoogle Scholar
  16. 16.
    S.C. Sharma; B.M. Girish; Rathnakar Kamath, B.M. Satish, S.C. Sharma; B.M. Girish; Rathnakar Kamath, B.M. Satish. Wear 213 (1997) 33–40, Wear 213 (1997) 33–40.CrossRefGoogle Scholar
  17. 17.
    R. Auras and C. Schvezov, Wear behavior, microstructure, and dimensional stability of as-cast zinc-aluminum/SIC (metal matrix composites) alloys, Metallurgical and Transactions 35A. (2004) 1579–1590.CrossRefGoogle Scholar
  18. 18.
    A. E. Ares; R. C. E. Schvezov, Solidification Structures and Properties of Zinc-Aluminum /SiC (MMC) Alloys, TMS Annual Meeting (2006) 183–193.Google Scholar
  19. 19.
    A.E. Ares and C.E. Schvezov, Experimental Study of the Columnar-to-Equiaxed Transition During Directional Solidification of Zinc-Aluminum Alloys and Composites, World Journal of Engineering (WJOE), 7 (2010) 13–29.Google Scholar
  20. 20.
    A. E. Ares, L. M. Gassa, C. M. Mendez, Corrosion Resistance of Directionally Solidified Casting Zinc-Aluminum Matrix, In: Corrosion Resistance, Chapter 2, Pages: 35–54, Editor: Hong Shih. INTECH Publishers, (2012).Google Scholar
  21. 21.
    A.E. Ares and C.E. Schvezov, Columnar-to-Equiaxed Transition in Metal Matrix Composites Reinforced with Silicon Carbide Particles, Journal of Metallurgy, 2013 (2013), Article ID 628495, 12 pages, http://dx.doi.org/10.1155/2013/628495, Hindawi Publishing Corporation.Google Scholar
  22. 22.
    A.E. Ares and C.E. Schvezov, Metal Matrix Composites Directionally Solidified, in Proceedings of Advanced Composites for Aerospace, Marine, and Land Applications, 2014 TMS Annual Meeting, edited by T. Sano, M. Peretti, T. Srivatsan, p.115–124.Google Scholar
  23. 23.
    G.F. Vander Voort, Metallography, Principles and Practice, Editorial ASM International (1984).Google Scholar
  24. 24.
    Binary Alloy Phase Diagram, Thaddeus B. Massalski ed., ASM, Metlas Park, OH, c1986.Google Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2015

Authors and Affiliations

  • Alicia Esther Ares
    • 1
    • 2
  • Carlos Enrique Schvezov
    • 1
    • 2
  1. 1.Materials Institute of Misiones IMAM (CONICET-UNaM)University of MisionesPosadas, MisionesArgentina
  2. 2.Member of CICNational Research Council (CONICET)Argentina

Personalised recommendations