Effect of Processing Parameters on the Microstructure of Mechanically Alloyed Nanostructured Al-Mn Alloys

  • Kristopher A. Darling
  • Anthony J. Roberts
  • James E. Catalano
  • Mark A. Tschopp
  • Laszlo J. Kecskes

Abstract

High-energy mechanical alloying was utilized to study the alloy formation between Al and Mn. A modified SPEX mill was designed to investigate the role of milling energy and milling power on enhancing the solubility of Mn in Al. Despite having a large influence on alloying kinetics (an increased rate of 3.25×) no further grain refinement or degree of alloying was observed with increasing milling energy. It is hypothesized that alloying in this particular binary system takes place and is controlled by the increasing interfacial surface area created between the Mn particles and the Al matrix. However, extensive comminution eventually likely leads to an autocatalytic exothermic reaction between the Mn particles and Al matrix, leading to the formation of the equilibrium phase Al6Mn. This reaction reduces the degree of and, in turn, frustrates further alloying, highlighting the practical limits of creating solid solutions in this system through mechanical alloying.

Keywords

aluminum manganese Al Mn high-energy ball milling mechanical alloying precipitation microstructure solid solubility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MA Meyers, A Mishra, and DJ Benson, Prog. Mat. Sci., 51 (2006) 427.CrossRefGoogle Scholar
  2. 2.
    K.A Darling, MA Tschopp, RK Guduru, WH Yin, Q Wei, and LJ Kecskes, Acta Mat., 76 (2014) 168.CrossRefGoogle Scholar
  3. 3.
    MA Tschopp, HA Murdoch, LJ Kecskes, and KA Darling, JOM, 66 (2014) 1000.CrossRefGoogle Scholar
  4. 4.
    KA Darling, AJ Roberts, Y Mishin, SN Mathaudhu, and LJ Kecskes, J. Alloy Comp. 573, 142 (2013).CrossRefGoogle Scholar
  5. 5.
    KA Darling, BK VanLeeuwen, JE Semones, CC Koch, RO Scattergood, LJ Kecskes, and SN Mathaudhu, Mat. Sci. Eng. A, 528 (2011) 4365.CrossRefGoogle Scholar
  6. 6.
    T Chookajorn, HA Murdoch, and CA Schuh, Science, 337 (2012) 951.CrossRefGoogle Scholar
  7. 7.
    HA Murdoch, CA Schuh, Acta Mat., 61 (2013) 2121.CrossRefGoogle Scholar
  8. 8.
    KA Darling, MA Tschopp, BK VanLeeuwen, MA Atwater, and ZK Liu, Comp. Mat. Sci., 84 (2014) 255.CrossRefGoogle Scholar
  9. 9.
    M Saber, H Kotan, CC Koch, and RO Scattergood, J. App. Phys., 113 (2013) 063515.CrossRefGoogle Scholar
  10. 10.
    M Saber, H Kotan, CC Koch, and RO Scattergood, J. App. Phys., 114 (2013) 103510.CrossRefGoogle Scholar
  11. 11.
    AInoue, M Watanabe, HM Kimura, F Takahashi, A Nagata, and T Masumoto, Mat. Trans. JIM, 33 (1992) 723.CrossRefGoogle Scholar
  12. 12.
    MN Rittner, JR Weertman, JA Eastman, KB Yoder, and DS Stone, Mat. Sci. Eng. A, 237 (1997) 185.CrossRefGoogle Scholar
  13. 13.
    PG Sanders, M Rittner, E Kiedaisch, JR Weertman, H Kung, and YC Lu, Nanostruct. Mat., 9 (1997) 433.CrossRefGoogle Scholar
  14. 14.
    SY Ruan, CA Schuh, Acta Mat., 57 (2009) 3810.CrossRefGoogle Scholar
  15. 15.
    S Ruan, KL Torres, GB Thompson, and CA Schuh, Ultramicroscopy, 111 (2011) 1062.CrossRefGoogle Scholar
  16. 16.
    SS Nayak, M Wollgarten, J Banhart, SK Pabi, and BS Murty, Mot. Sci. Eng. A, 527 (2010) 2370.CrossRefGoogle Scholar
  17. 17.
    M Krasnowski, T Kulik, Intermetallics, 18 (2010) 47.CrossRefGoogle Scholar
  18. 18.
    M Krasnowski, T Kulik, Mat. Chem Phys., 116 (2009) 631.CrossRefGoogle Scholar
  19. 19.
    TT Sasaki, T Ohkubo, and K Hono, Acta Mat., 57 (2009) 3529.CrossRefGoogle Scholar
  20. 20.
    KV Rajulapati, RO Scattergood, KL Murty, Z Horita, TG Langdon, and CC Koch, Metall Mat. Trans. A, 39A (2008) 2528.CrossRefGoogle Scholar
  21. 21.
    KA Darling, AJ Roberts, L Armstrong, D Kapoor, MA Tschopp, LJ Kecskes, and SN Mathaudhu, Mat. Sci. Eng. A, 589 (2014) 57.CrossRefGoogle Scholar
  22. 22.
    BD Stock, SR Cullity, Elements of X-Ray Diffraction, Upper Saddle River, NJ, 2001.Google Scholar
  23. 23.
    KV Rajulapati, Thesis “Synthesis and Mechanical Properties of Two Phase Nanostructured Al Based Composites” p 81, http://www.lib.ncsu.edu/resolver/1840.16/4561
  24. 24.
    H Jones, J. Mat. Sci. Let., 1 (1982) 405.CrossRefGoogle Scholar

Copyright information

© TMS (The Minerals, Metals & Materials Society) 2015

Authors and Affiliations

  • Kristopher A. Darling
    • 1
  • Anthony J. Roberts
    • 1
  • James E. Catalano
    • 1
  • Mark A. Tschopp
    • 1
  • Laszlo J. Kecskes
    • 1
  1. 1.U.S. Army Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations