Skip to main content

Quantifying Experimental Characterization Choices in Optimal Learning and Materials Design

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition
  • 3818 Accesses

Abstract

We consider the choices and subsequent costs associated with ensemble averaging and extrapolating experimental measurements in the context of optimizing material properties using Optimal Learning (OL). We demonstrate how these two general techniques lead to a trade-off between measurement error and experimental costs, and incorporate this trade-off in the OL framework. As a first contextual example, we study the effect of ensemble size in determining the most accessible regions of an RNA molecule. A second example considers the impact of the number and frequency of initial measurements used to extrapolate a measure of nanoemulsion stability. In both cases, we use OL simulations to determine the optimal choice of these characterization parameters by minimizing an associated total experimental cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Rajan. Materials Today, 8(10), 2005.

    Google Scholar 

  2. I. Ryzhov, W. B. Powell, and P. Frazier. Operations Research, 60(1), 2012.

    Google Scholar 

  3. P. Frazier, W. B. Powell, and S. Dayanik. INFORMS J. Comput., 21(4), 2009.

    Google Scholar 

  4. W. B. Powell and I. Ryzhov. Optimal learning. John Wiley & Sons, 2012.

    Book  Google Scholar 

  5. S. Chen, K. Reyes, M. Gupta, M. McAlpine, and W. B. Powell. SIAM J. on Uncert. Quant., 2014. submitted.

    Google Scholar 

  6. Y. Wang, K. Reyes, K. A. Brown, C. A Mirkin, and W. B. Powell. SIAM J. Sci. Comput., 2014. submitted.

    Google Scholar 

  7. P. Frazier, W. B. Powell, and S. Dayanik. SIAM J. Control Optim., 47(5), 2008.

    Google Scholar 

  8. M. Scherr, J. J. Rossi, G. Sczakiel, and V. Patzel. Nucleic Acids Res., 28(13), 2000.

    Google Scholar 

  9. U. Möckstein, H. Tafer, J. Hackermöller, S. H. Bernhart, P. F. Stadler, and I. L. Hofacker. Bioinformatics, 22(10), 2006.

    Google Scholar 

  10. [10] S. Sowa, J. Vazquez-Anderson, K. Dunn, C. Clark, M. Pribadi, R. De La Pena, M. Khoury, and L. Contreras. 2014. submitted.

    Google Scholar 

  11. K. Pays, J. Giermanska-Kahn, B. Pouligny, J. Bibette, and F. Leal-Calderon. J. Control. Release, 79(1), 2002.

    Google Scholar 

  12. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht. Phys. Rev. Lett., 95(26), 2005.

    Google Scholar 

  13. E. Dickinson. In Food Hydrocolloids. Springer, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Reyes, K., Chen, S., Li, Y., Powell, W.B. (2015). Quantifying Experimental Characterization Choices in Optimal Learning and Materials Design. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_85

Download citation

Publish with us

Policies and ethics