Skip to main content

DMLS Process Modelling and Validation

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition

Abstract

This paper discusses the modeling challenges related to additive manufacturing in general and DMLS (Direct Metal Laser Sintering) in particular. A seamless coupling of length scales allowing detailed analysis of the melt pool, laser track, material deposition and resulting residual stresses is presented.

The modelling components are verified separately and the complete modeling process is validated against experimental measurements. Comparison of numerical predictions and experimental measurements show good agreement. Finally, as a practical demonstration of the modelling platform applicability to improved work piece quality, the numerical optimization of deposition tracks to reduce in build residual stresses is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird, R.B., Stewart, W. and Lightfoot, E.N.; Transport Phenomena. Wiley, New York; 1960.

    Google Scholar 

  2. Dai, K. and Shaw, L., Thermal and Mechanical Finite Element Modeling of Laser Forming from Metal and Ceramic Powders, Acta Materialia 54 (2004) 69–80.

    Article  Google Scholar 

  3. Dantzig, J. A. and Rappaz, M., Solidification, EPFL Press, 21 August 2009.

    Book  Google Scholar 

  4. Fischer, P., Romano, V., Weber, H., P. and Kolossov, S., Pulsed Laser Sintering of Metallic Powders, Thin Solid Films 453 – 454 (2004) 139–144.

    Article  Google Scholar 

  5. Fischer, P. et al., Sintering of commercially pure titanium powder with a Nd:YAG laser source, Acta Materialia 51 (6) (2003) 1651–1662.

    Article  Google Scholar 

  6. Harvie, D. J. E. and Fletcher, D. F., A New Volume of Fluid Advection Algorithm: The Defined Donating Region Scheme, Int. J. Numer. Meth. Fluids, vol. 38, pp. 151–172, 2001.

    Article  Google Scholar 

  7. Hirt, C.W. and Nichols, B.D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries.” Journal of Computational Physics, Vol. 39, pp.201–225, 1981.

    Article  Google Scholar 

  8. Kothe, D.B., Rider, W.J., Mosso, S.J., and Brock, J.S., “Volume Tracking of Interfaces Having Surface Tension in Two and Three Dimensions.” AIAA Paper, 96–0859, 1996.

    Google Scholar 

  9. Leonard, B. P., The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection, Comput. Meth. Appl. Mech. Eng., vol. 88, pp. 17–74, 1991.

    Article  Google Scholar 

  10. Lonsdale, “An algebraic multigrid solver for the Navier-Stokes equations on unstructured meshes.” Int. J. Num. Meth. Heat Fluid Flow, Vol. 3, pp. 3–14, 1993.

    Article  Google Scholar 

  11. Patankar, S.V., “Numerical heat transfer and fluid flow.” McGraw-Hill, New York, 1980.

    Google Scholar 

  12. Peric, M., Kessler, R., and Scheuerer, G., “Comparison of finite-volume numerical methods with staggered and collocated grids.” Computers and Fluids, Vol. 16, No. 4, pp. 389–403, 1988.

    Article  Google Scholar 

  13. Puckett, E. G., A Volume of Fluid Interface Tracking Algorithm with Applications to Computing Shock Wave Rarefraction, Proc. Fourth Int. Symp. on Computational Fluid Dynamics, University of California at Davis, Davis, CA, 9–12, September, 1991, pp. 933–938.

    Google Scholar 

  14. Rhie, C.M. and Chow, W.L., “Numerical study of the turbulent flow past an airfoil with trailing edge separation.” AIAA Journal, Vol. 21, No. 11, pp. 1525–1532, 1983.

    Article  Google Scholar 

  15. Rider, W.J., Kothe, D.B., Mosso, S.J., Cerrutti, J.H., and Hochstein, J.I., “Accurate Solution Algorithms for Incompressible Multiphase Fluid Flows.” AIAA Paper, 95–0699, 1995.

    Google Scholar 

  16. Roberts, I., A., Wang, C., J., Esterlein, R., Stanford, M. and Mynors, D. J., A Three-Dimensional Finite Element Analysis of the Temperature Field during Laser ;Melting of Metal Powders in Additive Layer Manufacturing, International Journal of Machine Tools & Manufacture 49 (2009) 916–923.

    Article  Google Scholar 

  17. Rudman, M., Volume Tracking Methods for Interfacial Flow Calculations, Int. J. Numer. Meth. Fluids, vol. 24, pp. 671–691, 1997.

    Article  Google Scholar 

  18. Saad, Y., “Iterative Methods for Sparse Linear Systems.” PWS, Boston, 1996.

    Google Scholar 

  19. Sih, S., S. and Barlow, J., W., The prediction of the thermal conductivity of powders. In: Marcus H, Beaman J, Bourell D, Barlow J, Crawford R, editors. Proceedings of the 6th Annual SFF Symposium. Austin: The University of Texas; 1995. p. 397–401.

    Google Scholar 

  20. Sleijpen, G. L. G., Fokkema, D. R., 1993, “BICGSTAB(L) For Linear Equations Involving Unsymmetric Matrices With Complex Spectrum,” ETNA, pp. 11–32.

    Google Scholar 

  21. Swaminathan, C.R., and Voller, V.R., 1992, “A general enthalpy method for modeling solidification process.” Metallurgical Transactions B, Vol. 23B, pp. 651–664.

    Article  Google Scholar 

  22. Ubbink, O. and Issa, R., A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes, J. Comput. Phys., vol. 153, pp. 26–50, 1999.

    Article  Google Scholar 

  23. Unverdi, S. O. and Tryggvason, G., A Front Tracking Method for Viscous, Incompressible Multi-fluid Flow, J. Comput. Phys., vol. 100, pp. 25–37, 1992.

    Article  Google Scholar 

  24. Van doormaal, J. P., and Raithby., G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows.” Numer. Heat Transfer, 7, pp. 147–163, 1984.

    Google Scholar 

  25. Vanek, P., Mandel, J., and Brezina, M., “Algebraic multigrid based on smoothed aggregation for second and fourth order problems.” Computing, 56, pp. 179–196, 1996.

    Article  Google Scholar 

  26. Yang, U.M. “Parallel Algebraic Multigrid Methods – High Performance Preconditioners.” Chapter in Numerical Solution of Partial Differential Equations on Parallel Computers, A.M. Brauset and A. Tveito, eds., Springer-Verlag, 51, pp. 209–236, 2006.

    Chapter  Google Scholar 

  27. Youngs, D. L., An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code, Tech. Rep. 44=92=35, Atomic Weapons Research Establishment, Harwell, UK, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

N’Dri, N. et al. (2015). DMLS Process Modelling and Validation. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_49

Download citation

Publish with us

Policies and ethics