Skip to main content

Numerical Investigation of the Interaction between the Martensitic Transformation Front and the Plastic Strain in Austenite

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition
  • 5512 Accesses

Abstract

Phase-field simulations of the martensitic transformation (MT) with plastic deformation are carried out. The elasto-plastic phase-field approach of semicoherent MT is used. The evolution equation for the dislocation density field is extended by taking into account the thermal and athermal annihilation of the dislocations in the austenitic matrix that leads to an inhomogeneous distribution of the total dislocation density. During the phase transformation one part of the dislocations in the austenite being responsible for the plastic strain is inherited by the martensitic phase and this inheritance depends on the kinetics and the crystallography of the MT. Another part of dislocations moves with the transformation front and decreases the total plastic strain. Based on the simulation results the specific type of phenomenological dependency between the inherited plastic strain and the martensite phase fraction is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Dadda, H.J. Maier, D. Niklasch, I. Karaman, H.E. Karaca, Y.I. Chumlyakov, Metall. Mater. Trans. A, 39 (2008), 2026–2039.

    Article  Google Scholar 

  2. O. Graessel, L. Krueger, G. Frommeyer, L.W, Meyer, Int. J. of Plasticity, 16 (2000), 1391–1409.

    Google Scholar 

  3. Y. Wang, Y., A.G. Khachaturyan, Acta Mater., 45 (1997), 759–773.

    Article  Google Scholar 

  4. Y.M. Jin, A. Artemev, A.G. Khachaturyan, Acta Mater., 49 (2001), 2309–2320.

    Google Scholar 

  5. A. Artemev, Y.M. Jin, A.G. Khachaturyan, Phil. Mag. A, 82 (2002), 1249–1270.

    Google Scholar 

  6. W. Zhang, Y.M. Jin, A.G. Khachaturyan, Acta Mater., 55 (2007), 565–574.

    Google Scholar 

  7. S.Y. Hu, L.Q. Chen, Acta Mater., 49(3) (2001), 463–472.

    Article  Google Scholar 

  8. D. Rodney. Y. Le Bouar, A. Finel, Acta Mater., 51 (2003), 17.

    Article  Google Scholar 

  9. Y.U. Wang, Y.M. Jin, A.M. Cuitino, A.G. Khachaturyan, Acta Mater., 49 (2001), 1847–1857.

    Article  Google Scholar 

  10. N. Zhou, C. Shen, M.J. Mills, Y. Wang, Acta Mater., 55 (2007), 5369.

    Article  Google Scholar 

  11. N. Zhou, C. Shen, M.J. Mills, Y. Wang, Phil. Mag., 90 (2010), 405–436.

    Article  Google Scholar 

  12. V.I. Levitas, M. Javanbakht, Phys. Rev. B, 86 (2012), 140101(R).

    Google Scholar 

  13. V.I. Levitas, M. Javanbakht, Appl. Phys. Lett., 102 (2013), 251904.

    Google Scholar 

  14. Z. Cong, Y. Murata, Y. Tsukada, T. Koyama, Phil. Mag., 93(14) (2013), 1739–1747.

    Article  Google Scholar 

  15. H.K. Yeddu, A. Malik, J gren, G. Amberg, A. Borgenstam, Acta Mater., 60 (2012), 1538–1547.

    Article  Google Scholar 

  16. H.K. Yeddu, A. Borgenstam, J. Agren, Acta Mater., 61(7) (2013), 2595–2606.

    Google Scholar 

  17. A. Yamanaka, T. Takaki, Y. Tomita, ISIJ International, 52 (2012), 659–668.

    Article  Google Scholar 

  18. J. Pan, J.R. Rice, Int. J. Solid. Struct., 19 (1983), 973–987.

    Article  Google Scholar 

  19. F. Roters, D. Raabe, G. Gottstein, Acta Mater., 48 (2000), 4181–4189.

    Article  Google Scholar 

  20. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater., 58 (2010), 1152–1211.

    Article  Google Scholar 

  21. A. Ma, F. Roters, Acta Mater., 52 (2004), 3603–3612.

    Article  Google Scholar 

  22. T. Takaki, A. Yamanaka, Y. Higa, Y. Tomita, J. Comp.-Aided Mater. Design, 14 (2007), 75–84.

    Article  Google Scholar 

  23. A. Gaubert, Y. Le Bouar, A. Finel, Phil. Mag., 90 (2010), 375–404.

    Article  Google Scholar 

  24. T. Takaki, Y. Tomita, Int. J. Mech. Sci., 52 (2010), 320–328.

    Article  Google Scholar 

  25. A. Yamanaka, T. Takaki, Int. J. of Automation Technology, 7(1) (2013), 16–23.

    Article  Google Scholar 

  26. A. Ambroziak, P. Klosowski, Task Quarterly, 10(1) (2007), 49–61.

    Google Scholar 

  27. T. Ohashi, Philos. Mag. Lett., 75 (1997), 51–57.

    Article  Google Scholar 

  28. J.E. Breedis, C.M. Wayman, Trans. AIME, 224 (1962), 1128–1133.

    Google Scholar 

  29. R. Ostwald, T. Bartel, A. Menzel, Int. J. Structural Changes in Solids, 3(1) (2011), 63–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Kundin, J., Emmerich, H. (2015). Numerical Investigation of the Interaction between the Martensitic Transformation Front and the Plastic Strain in Austenite. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_153

Download citation

Publish with us

Policies and ethics